【多图文源码】【livenessProbe源码】【luence源码】视觉slam源码_视觉slam开源

时间:2025-01-01 10:38:17 来源:mtk6589 源码 分类:百科

1.?视觉视觉Ӿ?slamԴ??
2.视觉SLAMORB-SLAM:让人Orz的SLAM
3.如何评价ORB-SLAM3?
4.SLAM地图评估指标及EVO评估工具安装使用教程
5.Ubuntu中pangolin库的安装配置及问题解决
6.ORB-SLAM3 源码剖析:IMU 预积分

视觉slam源码_视觉slam开源

?Ӿ?slamԴ??

       在使用OpenCV进行图像处理时,有时需要计算图像间的源码变换矩阵,以实现图像对齐。开源其中,视觉视觉cv2.findHomography()函数是源码实现这一目标的重要工具。但请注意,开源多图文源码这一计算得到的视觉视觉变换矩阵仅适用于平面物体,并且在使用前,源码需要先获取相机的开源内参信息(通常通过标定过程获得)。

       进一步操作中,视觉视觉若需要将计算出的源码变换矩阵中的旋转部分(R)和位移部分(t)分开,OpenCV提供了相应的开源接口。具体而言,视觉视觉可以利用cv2.decomposeEssentialMat()或cv2.decomposeHomographyMat()函数,源码来分别从Essential矩阵或Homography矩阵中提取旋转和位移信息。开源这些接口在处理三维场景时尤其有用。

       在实际应用中,如OpenVSLAM(一种用于视觉SLAM(同步定位与地图构建)的开源系统)的源码中,通常直接利用OpenCV提供的分解Homography或Essential矩阵的接口来进行初始化,以实现目标物体在不同相机视图间的对齐与定位。

视觉SLAMORB-SLAM:让人Orz的SLAM

       ORB-SLAM,在视觉SLAM领域享有盛誉,其源码在GitHub上已有4.4K+Star,livenessProbe源码充分彰显了西班牙小哥的出色贡献。近期深入研究其论文并结合源码,体验了一番酸爽,发现它在SLAM领域确实有着独特的魅力与贡献。

       ORB-SLAM的核心框架由三个并发进程组成:跟踪、局部建图和回环检测,系统结构清晰,功能分明。跟踪是主进程,负责定位和跟踪相机运动,通过特征匹配实现定位与优化。局部建图则负责关键帧与地图点的插入、删除及局部优化。回环检测则通过搜索回环关键帧,实现位姿图优化,确保系统鲁棒性。

       特征提取是ORB-SLAM的关键之一,它采用ORB特征,兼顾性能与效率。与SURF、SIFT等相比,ORB提取速度快,luence源码每张仅需.3ms,适用于实时操作。ORB在FAST角点基础上加入方向信息,使BRIEF描述子旋转不变,同时利用图像金字塔和灰度质心法提取特征,实现尺度不变性。此外,通过网格划分与四叉树结构,ORB-SLAM确保特征点分布均匀,即使特征点不足,也可通过调整FAST阈值增加。

       单目初始化是ORB-SLAM的另一大亮点,它通过特征点匹配计算基础矩阵和单应矩阵,自动判断场景类型,无需人工设定模型。共视图与本质图结构则加强了关键帧间的联系,实现高效回环检测。相机重定位策略确保了系统在跟踪失败时能快速恢复,关键帧与地图点的删增策略则优化了系统性能。

       ORB-SLAM提供多样化的Bundle Adjustment方式,包括初始化阶段的全BA、跟踪过程的-1001源码运动BA及局部建图阶段的局部BA,适应不同场景需求。整个系统庞大复杂,通过总结主要特性,虽有其精髓,但仍需深入研究,以充分理解其工作原理与优化策略。

       总之,ORB-SLAM在视觉SLAM领域展现出了其独特魅力与贡献,从其高效的特征提取到灵活的系统框架,再到多样化的优化策略,无不体现其在SLAM技术中的卓越地位。向所有SLAM领域的先驱者致以崇高的敬意。

如何评价ORB-SLAM3?

       我觉得 ORB-SLAM3 系统是基于之前的 ORB-SLAM2、ORB-SLAM-VI 进行扩展。作者组的工作一脉相承,围绕着 ORB feature-based SLAM 做了非常多有重大意义的工作。本文其中在一些重要改进模块,如 IMU 初始化、multi-map system 等,是作者组里前几年的工作。我认为这是一篇更加偏向于系统性质的文章,把这么多工作串了起来,linuxopens源码并且作者非常慷慨的把它开源了出来,非常赞!

SLAM地图评估指标及EVO评估工具安装使用教程

       在评估使用ORB-SLAM3构建的地图精度时,首先需要解决地图数据与GPS真值坐标尺度不一致的问题,进行地图数据对齐处理。之后,通过使用EVO工具进行评估,以获取更清晰的评估结果。整理后,以下是关于SLAM地图评估指标和EVO评估工具安装使用教程的详细内容。

       一、SLAM评价指标

       在评估SLAM/VO算法时,需要从时耗、复杂度、精度等多个角度进行。其中,精度评价是最重要的考量。视觉SLAM通常使用绝对位姿误差(APE)、均方根误差(RMSE)和标准差(STD)等指标来评估运动轨迹的精度,这些指标衡量的是算法估计位姿与真实位姿之间的误差。APE首先对齐真实值和估计值,计算每个值之间的偏差,用于评估轨迹的全局一致性。RMSE衡量整体估计值与真实值的偏差程度,偏差越大,RMSE也越大。

       二、EVO安装教程及命令概览

       EVO是一个常用的评估工具,用于评估SLAM和VO算法的性能。要安装EVO,请访问其官方源码地址。使用命令行一键安装,可能遇到安装错误,参考相关解决方法以解决可能的问题。EVO提供了多种评估指标和命令,包括评估绝对位姿误差(evo_ape)和相对位姿误差(evo_rpe)等功能。

       三、运行EVO

       1. evo_traj:主要用于绘制轨迹、输出轨迹文件和转换数据格式等功能。EVO自带示例包括使用自带数据进行轨迹对比和轨迹对齐。对于存在尺度不确定性的单目相机,EVO支持使用-s参数进行Sim(3)上的对齐(旋转、平移与尺度缩放)。

       2. 轨迹评估:EVO可以评估两条轨迹的误差,主要命令包括计算绝对位姿误差(evo_ape)和相对位姿误差(evo_rpe)。这些指令支持轨迹对齐和尺度缩放功能,并提供详细的参数说明以指导使用。通过这些命令,可以直观地评估轨迹的全局一致性与局部准确性。

Ubuntu中pangolin库的安装配置及问题解决

       在Ubuntu.环境下安装与配置视觉SLAM十四讲中提及的pangolin库,解决安装与使用过程中可能遇到的问题。首先,确保安装所需的依赖及工具。快捷键Ctrl+Alt+T打开终端,依次输入指令:

       1.1 pangolin库安装

       进入终端,克隆视觉SLAM十四讲源代码,然后进入pangolin库文件夹,下载库源文件。接下来,进入下载好的源文件目录,使用指令进行安装,其中-j后的数字可根据电脑配置调整,以优化安装速度。

       1.3 pangolin库安装

       在安装完成后,可以尝试通过VScode运行ch3目录下examples中的示例程序,编译并执行。

       2 测试pangolin库

       2.1 示例程序编译

       在VScode终端输入指令,为测试程序做准备。

       2.2 示例程序运行

       运行两个示例程序,程序名称可通过ls指令查看,拼写时使用tab键补全。在运行过程中可能会遇到如"cannot find trajectory file"的错误。这通常是因为程序相对路径的设定与实际路径不匹配。解决方法是修改程序中的相对路径,将实际路径替换掉。

       2.3 程序运行问题解决

       解决"cannot find trajectory file"报错,需要修改程序中路径设置,并重新编译程序。再次运行示例程序,问题将得到解决。此外,初次运行visualizeGeometry.cpp时可能会出现找不到libpango_image.so的报错,这通常是因为系统未找到共享库。此时,执行指令刷新共享库即可。

       至此,pangolin库的安装与使用过程完成。在执行过程中,注意查看终端输出,确保每个步骤正确无误。如有其他问题,建议查阅官方文档或社区讨论。

ORB-SLAM3 源码剖析:IMU 预积分

       IMU的数据结构在ORB-SLAM3中用于表示机体坐标系中的测量值。在特定时刻,加速度计测量线加速度和陀螺仪测量角速度。假设这些测量值包含高斯白噪声,且偏置建模为随机游走,其导数也是高斯白噪声。将重力转换到机体坐标系后,得到连续视觉帧间的IMU预积分结果。这些预积分包括旋转、速度和位置测量,以及整个测量向量的协方差矩阵。

       在ORB-SLAM3中,每帧的IMU预积分在tracking线程中计算,具体由Tracking::PreintegrateIMU()函数执行。每帧间的IMU测量通过src/ImuTypes.cc中的Preintegrated::IntegrateNewMeasurement()进行积分。主要步骤如下:首先进行偏置校正,然后计算位置、速度的增量,接着计算旋转的增量。旋转变化量以李代数中的旋转向量表示,并通过指数映射转换为旋转矩阵。旋转矩阵按旋转顺序右乘。最后,更新协方差矩阵,并调整与偏置修正相关的位置、速度和旋转雅可比。

       IMU的偏置校正、测量、标定和预积分类定义在include/ImuTypes.h文件中。

       值得注意的是,对于初学者,了解GDB调试方法是提高ORB-SLAM3源码理解效率的重要步骤。GDB提供了一系列功能,允许开发者在运行程序时设置断点、查看变量值、追踪程序执行流程等,从而深入分析代码行为和潜在问题。