本站提倡有节制游戏,合理安排游戏时间,注意劳逸结合。

【qt sqlite源码下载】【趋势变强指标源码】【猜客魔盒源码】线程池源码深度分析_线程池源码深度分析怎么做

2025-01-01 13:09:55 来源:综合 分类:综合

1.深度分析Binder线程池的线程析线启动流程
2.从源码角度分析Tomcat的acceptCount、maxConnections、池源程池maxThreads参数
3.通过transmittable-thread-local源码理解线程池线程本地变量传递的码深原理
4.C语言实现高并发服务器上线程池原理(含源码)
5.Java并发必会,深入剖析Semaphore源码
6.ThreadPoolExecutor简介&源码解析

线程池源码深度分析_线程池源码深度分析怎么做

深度分析Binder线程池的度分启动流程

       理论基础Binder

       Binder它是Android中的一种进程间通信机制,它主要采用的源码是CS架构模式。Binder框架中主要涉及到4个角色Client、深度qt sqlite源码下载Server、分析ServiceManager及Binder驱动,线程析线其中Client、池源程池Server、码深ServiceManager运行在用户空间,度分Binder驱动运行在内核空间。源码

线程池

       线程池它是深度一种用于多线程处理形式,处理过程中将任务添加到队列,分析然后在创建线程后自动启动这些任务。线程析线线程池线程都是后台线程。每个线程都使用默认的堆栈大小,以默认的优先级运行,并处于多线程单元中。

       简单的说:线程池就是创建一些线程,它们的集合称为线程池。

Binder线程池启动流程

       我们知道一个新的app应用程序进程在创建完成之后,它会通过调用RunTimeInit类的静态成员函数zygoteInitNative来进行启动Binder线程池。

       Binder线程池启动过程中,主要调用几个关键函数:ZygoteInitNative--->onZygoteInit--->startThreadPool。

       下面的源码分析主要是以android5.0版本为例。

ZygoteInitNative源码分析

       由于ZygoteInitNative函数是java实现的代码,实践上最终调用的是由C++实现的JNI方法。以下代码来源于系统的/frameworks/base/core/jni/androidRuntime.cpp文件中

staticvoidcom_android_internal_os_RuntimeInit_nativeZygoteInit(JNIEnv*env,jobjectclazz){ //gCurRuntime是个全局的变量,后面跟上的是另外实现的方法。gCurRuntime->onZygoteInit();}onZygoteInit源码分析

       onZygoteInit函数在需要源码的位置:/frameworks/base/cmds/app_process/app_main.cpp文件中。

该函数是趋势变强指标源码个虚函数,并且是一个无返回值和无参数的函数virtualvoidonZygoteInit(){ //Re-enabletracingnowthatwe'renolongerinZygote.atrace_set_tracing_enabled(true);//获取进程的状态信息sp<ProcessState>proc=ProcessState::self();//打印日志信息ALOGV("Appprocess:startingthreadpool.\n");//启动线程池proc->startThreadPool();}startThreadPool源码分析

       startThreadPool系统实现在\frameworks\native\libs\binder\ProcessState.cpp文件中。

       每一个支持Binder进程间通信机制的进程内都有一个唯一的ProcessState对象,当这个ProcessState对象的成员函数StartThreadPool函数被第一次调用的时候,它就会在当前进程中启动一个线程池,并将mThreadPoolStarted这个成员变量设置为true。

//该函数是个无参数,无返回值的函数voidProcessState::startThreadPool(){ AutoMutex_l(mLock);//判断线程池是否启动状态,启动的话就将标志信息设置为true属性。if(!mThreadPoolStarted){ mThreadPoolStarted=true;spawnPooledThread(true);}}总结

       Binder在android底层中是一个非常重要的机制,我们在实际的项目调用过程中,我们在app应用程序中只要实现自己的Binder本地对象的时候,跟其他服务一样,只需要将它进行启动起来,并且进行注册到ServerMananger就可以了。至于内部的实现一般是不需要去关心的。

从源码角度分析Tomcat的acceptCount、maxConnections、maxThreads参数

       在深入探讨Tomcat的acceptCount、maxConnections和maxThreads参数时,首先理解它们的关键在于理解请求在服务器端的处理流程。acceptCount决定了当所有处理线程忙时,Tomcat能暂存的连接请求队列的最大长度,相当于TCP连接时的全队列容量。maxThreads则是线程池中最大线程数,负责处理实际的HTTP请求。

       在连接建立阶段(图1),当客户端尝试连接时,acceptCount在ServerSocket的backlog参数中起作用,它限制了TCP连接队列的大小。接着,初始化的猜客魔盒源码线程池会通过prestartAllCoreThreads启动核心线程,为后续的SocketProcessor做准备。

       在Acceptor获取Socket时,serverSocket.accept()的调用受到maxConnections的限制,防止过多的并发连接。一旦获取到Socket,就交由线程池执行SocketProcessor,进行实际的请求处理。

       然而,如果处理请求的时间过长,如假设的次请求,需要无限长时间,我们需要考虑线程池的动态管理。如设置acceptCount为,maxThreads为,maxConnections为,minSpareThreads为。这意味着在高并发情况下,即使有个最大连接,acceptCount的个等待队列也足够缓冲,而maxThreads的个线程则负责处理,minSpareThreads则确保了至少有个空闲线程应对突发请求。

       总结,acceptCount、maxConnections和maxThreads这三个参数共同影响了Tomcat的并发处理能力和连接队列管理,理解它们在实际应用中的配置和作用至关重要。

通过transmittable-thread-local源码理解线程池线程本地变量传递的原理

       最近几周,我投入了大量的时间和精力,完成了UCloud服务和中间件迁移至阿里云的工作,因此没有空闲时间撰写文章。不过,回忆起很早之前对ThreadLocal源码的GuitarPro在线源码分析,其中提到了ThreadLocal存在向预先创建的线程中传递变量的局限性。恰好,我的一位前同事,HSBC的技术大牛,提到了团队引入了transmittable-thread-local(TTL)来解决此问题。借此机会,我深入分析了TTL源码,本文将全面分析ThreadLocal和InheritableThreadLocal的局限性,并深入探讨TTL整套框架的实现。如有对线程池和ThreadLocal不熟悉的读者,建议先阅读相关前置文章,本篇文章行文较为干硬,字数接近5万字,希望读者耐心阅读。

       在Java中,没有直接的API允许子线程获取父线程的实例。获取父线程实例通常需要通过静态本地方法Thread#currentThread()。同样,为了在子线程中传递共享变量,也常采用类似的方法。然而,这种方式会导致硬编码问题,限制了方法的复用性和灵活性。为了解决这一问题,线程本地变量Thread Local应运而生,其基本原理是通过线程实例访问ThreadLocal.ThreadLocalMap来实现变量的存储与传递。

       ThreadLocal与InheritableThreadLocal之间的区别主要在于控制ThreadLocal.ThreadLocalMap的创建时机和线程实例中对应的属性获取方式。通过分析源码,可以清楚地看到它们之间的联系与区别。对于不熟悉概念的读者,可以尝试通过自定义实现来理解其中的外贸分销平台源码原理与关系。

       ThreadLocal和InheritableThreadLocal的最大局限性在于无法为预先创建的线程实例传递变量。泛线程池Executor体系、TimerTask和ForkJoinPool等通常会预先创建线程,因此无法在这些场景中使用ThreadLocal和InheritableThreadLocal来传递变量。

       TTL提供了更灵活的解决方案,它通过委托机制(代理模式)实现了变量的传递。委托可以基于Micrometer统计任务执行时间并上报至Prometheus,然后通过Grafana进行监控展示。此外,TTL通过字节码增强技术(使用ASM或Javassist等工具)实现了类加载时期替换Runnable、Callable等接口的实现,从而实现了无感知的增强功能。TTL还使用了模板方法模式来实现核心逻辑。

       TTL框架的核心类TransmittableThreadLocal继承自InheritableThreadLocal,通过全局静态变量holder来管理所有TransmittableThreadLocal实例。holder实际上是一个InheritableThreadLocal,用于存储所有线程本地变量的映射,实现变量的全局共享。disableIgnoreNullValueSemantics属性的设置可以影响NULL值的处理方式,影响TTL实例的行为。

       发射器Transmitter是TransmittableThreadLocal的一个公有静态类,提供传输TransmittableThreadLocal实例和注册当前线程变量至其他线程的功能。通过Transmitter的静态方法,可以实现捕获、重放和复原线程本地变量的功能。

       TTL通过TtlRunnable类实现了任务的封装,确保在执行任务时能够捕获和传递线程本地变量。在任务执行前后,通过capture和restore方法捕获和重放变量,实现异步执行时上下文的传递。

       启用TTL的Agent模块需要通过Java启动参数添加javaagent来激活字节码增强功能。TTL通过Instrumentation回调激发ClassFileTransformer,实现目标类的字节码增强,从而在执行任务时自动完成上下文的捕捉和传递。

       TTL框架提供了一种高效、灵活的方式来解决线程池中线程复用时上下文传递的问题。通过委托机制和字节码增强技术,TTL实现了无入侵地提供线程本地变量传递功能。如果您在业务代码中遇到异步执行时上下文传递的问题,TTL库是一个值得考虑的解决方案。

C语言实现高并发服务器上线程池原理(含源码)

       在高并发服务器场景中,线程池作为一种高效的多线程处理策略,旨在有效利用资源。其工作流程通常包括接收消息、分类、创建线程、传递任务、线程执行和任务完成。对于小型局域网,这种方法足够,但在广域网或大型局域网中,频繁的请求可能导致线程频繁创建和销毁,这在内存资源有限的嵌入式服务器中尤为关键。

       因此,线程池技术应运而生,通过复用线程,一个线程可以处理不同任务,避免了频繁创建和销毁的开销。理解线程池的结构十分重要,它由任务队列、线程集合(包括工作线程、空闲线程和待销毁线程)和管理者线程组成。任务队列负责存储待处理任务,以先进先出的方式组织;线程集合则负责执行任务;管理者线程则负责监控线程状态,动态调整线程数量以维持最佳性能。

       线程池的核心结构包括一个threadpool_t结构体,其中包含线程池状态、任务队列信息,以及用于同步操作的互斥锁。任务结构中包含处理函数的指针和相关参数。在使用时,需将分类后的处理函数与参数打包为任务,并放入队列,等待线程执行。

       为了深入学习,你可以参考一些资源,例如加入Linux内核技术交流群,获取学习资料和书籍推荐。而想要在嵌入式开发领域进入互联网大厂,理解并掌握线程池的原理和实现是必不可少的。内核学习网站也是个不错的资源来源。

Java并发必会,深入剖析Semaphore源码

       在深入理解Java并发编程时,必不可少的是对Semaphore源码的剖析。本文将带你探索这一核心组件,通过实践和源码解析,掌握其限流和共享锁的本质。Semaphore,中文名信号量,就像一个令牌桶,任务执行前需要获取令牌,处理完毕后归还,确保资源访问的有序进行。

       首先,Semaphore主要有acquire()和release()两个方法。acquire()负责获取许可,若许可不足,任务会被阻塞,直到有许可可用。release()用于释放并归还许可,确保资源释放后,其他任务可以继续执行。一个典型的例子是,如果一个线程池接受个任务,但Semaphore限制为3,那么任务将按每3个一组执行,确保系统稳定性。

       Semaphore的源码实现巧妙地结合了AQS(AbstractQueuedSynchronizer)框架,通过Sync同步变量管理许可数量,公平锁和非公平锁的实现方式有所不同。公平锁会优先处理队列中的任务,而非公平锁则按照获取许可的顺序进行。

       acquire()方法主要调用AQS中的acquireSharedInterruptibly(),并进一步通过tryReleaseShared()进行许可更新,公平锁与非公平锁的区别在于判断队列中是否有前置节点。release()方法则调用releaseShared(),更新许可数量。

       Semaphore的简洁逻辑在于,AQS框架负责大部分并发控制,子类只需实现tryReleaseShared()和tryAcquireShared(),专注于许可数量的管理。欲了解AQS的详细流程,可参考之前的文章。

       最后,了解了Semaphore后,我们还将继续探索共享锁CyclicBarrier的实现,敬请期待下篇文章。

ThreadPoolExecutor简介&源码解析

       线程池是通过池化管理线程的高效工具,尤其在多核CPU时代,利用线程池进行并行处理任务有助于提升服务器性能。ThreadPoolExecutor是线程池的具体实现,它负责线程管理和任务管理,以及处理任务拒绝策略。这个类提供了多种功能,如通过Executors工厂方法配置,执行Runnable和Callable任务,维护任务队列,统计任务完成情况等。

       创建线程池需要考虑关键参数,如核心线程数(任务开始执行时立即创建),最大线程数(任务过多时限制新线程生成),线程存活时间,任务队列大小,线程工厂以及拒绝策略。JDK提供了四种拒绝策略,如默认的AbortPolicy,当资源饱和时抛出异常。此外,线程池还提供了beforeExecute和afterExecute钩子函数,用于在任务执行前后执行自定义操作。

       当任务提交到线程池时,会经历一系列处理流程,包括任务的执行和线程池状态的管理。例如,如果任务队列和线程池满,会根据拒绝策略处理新任务。使用线程池时,需注意线程池容量与状态的计算,以及线程池工作线程的动态调整。

       示例中,自定义线程池并重写钩子函数,创建任务后向线程池提交,可以看到线程池如何根据配置动态调整资源。但要注意,如果任务过多且无法处理,可能会抛出异常。源码分析中,submit方法实际上是调用execute,而execute内部包含Worker类和runWorker方法的逻辑,包括任务的获取和执行。

       线程池的容量上限并非Integer.MAX_VALUE,而是由ctl变量的低位决定。 Doug Lea的工具函数简化了ctl的操作,使得计算线程池状态和工作线程数更加便捷。通过深入了解ThreadPoolExecutor,开发者可以更有效地利用线程池提高应用性能。

相关推荐
一周热点