本站提倡有节制游戏,合理安排游戏时间,注意劳逸结合。

【双语直播源码】【qt selectall源码】【linux源码检索】hadoop源码阅读环境

2025-01-01 11:05:08 来源:热点 分类:热点

1.如何在Mac使用Intellij idea搭建远程Hadoop开发环境
2.hadoop和hadoop有什么区别?

hadoop源码阅读环境

如何在Mac使用Intellij idea搭建远程Hadoop开发环境

       (1)准备工作

       1)

       安装JDK

       6或者JDK

       7

       2)

       安装scala

       2..x

       (注意版本)

       2)下载Intellij

       IDEA最新版(本文以IntelliJ

       IDEA

       Community

       Edition

       .1.1为例说明,源码阅读不同版本,环境界面布局可能不同)

       3)将下载的源码阅读Intellij

       IDEA解压后,安装scala插件,环境流程如下:

       依次选择“Configure”–>

       “Plugins”–>

       “Browse

       repositories”,源码阅读输入scala,环境双语直播源码然后安装即可

       (2)搭建Spark源码阅读环境(需要联网)

       一种方法是源码阅读直接依次选择“import

       project”–>

       选择spark所在目录

       –>

       “SBT”,之后intellij会自动识别SBT文件,环境并下载依赖的源码阅读外部jar包,整个流程用时非常长,环境取决于机器的源码阅读网络环境(不建议在windows

       下操作,可能遇到各种问题),环境一般需花费几十分钟到几个小时。源码阅读注意,环境下载过程会用到git,源码阅读因此应该事先安装了git。

       第二种方法是首先在linux操作系统上生成intellij项目文件,然后在intellij

       IDEA中直接通过“Open

       Project”打开项目即可。在linux上生成intellij项目文件的方法(需要安装git,不需要安装scala,sbt会自动下载)是qt selectall源码:在

       spark源代码根目录下,输入sbt/sbt

       gen-idea

       注:如果你在windows下阅读源代码,建议先在linux下生成项目文件,然后导入到windows中的intellij

       IDEA中。

       (3)搭建Spark开发环境

       在intellij

       IDEA中创建scala

       project,并依次选择“File”–>

       “project

       structure”

       –>

       “Libraries”,选择“+”,将spark-hadoop

       对应的包导入,比如导入spark-assembly_2.-0.9.0-incubating-hadoop2.2.0.jar(只需导入该jar

       包,其他不需要),如果IDE没有识别scala

       库,linux源码检索则需要以同样方式将scala库导入。之后开发scala程序即可:

       编写完scala程序后,可以直接在intellij中,以local模式运行,方法如下:

       点击“Run”–>

       “Run

       Configurations”,在弹出的框中对应栏中填写“local”,表示将该参数传递给main函数,如下图所示,之后点击“Run”–>

       “Run”运行程序即可。

       如果想把程序打成jar包,d指标源码通过命令行的形式运行在spark

       集群中,可以按照以下步骤操作:

       依次选择“File”–>

       “Project

       Structure”

       –>

       “Artifact”,选择“+”–>

       “Jar”

       –>

       “From

       Modules

       with

       dependencies”,选择main函数,并在弹出框中选择输出jar位置,并选择“OK”。

       最后依次选择“Build”–>

       “Build

       Artifact”编译生成jar包。

hadoop和hadoop有什么区别?

       1、运行模式不同:

       单机模式是Hadoop的默认模式。这种模式在一台单机上运行,海康ipc源码没有分布式文件系统,而是直接读写本地操作系统的文件系统。

       伪分布模式这种模式也是在一台单机上运行,但用不同的Java进程模仿分布式运行中的各类结点。

       2、配置不同:

       单机模式(standalone)首次解压Hadoop的源码包时,Hadoop无法了解硬件安装环境,便保守地选择了最小配置。在这种默认模式下所有3个XML文件均为空。当配置文件为空时,Hadoop会完全运行在本地。

       伪分布模式在“单节点集群”上运行Hadoop,其中所有的守护进程都运行在同一台机器上。

       3、节点交互不同:

       单机模式因为不需要与其他节点交互,单机模式就不使用HDFS,也不加载任何Hadoop的守护进程。该模式主要用于开发调试MapReduce程序的应用逻辑。

       伪分布模式在单机模式之上增加了代码调试功能,允许你检查内存使用情况,HDFS输入输出,以及其他的守护进程交互。

扩展资料:

       核心架构:

       1、HDFS:

       HDFS对外部客户机而言,HDFS就像一个传统的分级文件系统。可以创建、删除、移动或重命名文件,等等。存储在 HDFS 中的文件被分成块,然后将这些块复制到多个计算机中(DataNode)。这与传统的 RAID 架构大不相同。块的大小和复制的块数量在创建文件时由客户机决定。

       2、NameNode

       NameNode 是一个通常在 HDFS 实例中的单独机器上运行的软件。它负责管理文件系统名称空间和控制外部客户机的访问。NameNode 决定是否将文件映射到 DataNode 上的复制块上。

       3、DataNode

       DataNode 也是在 HDFS实例中的单独机器上运行的软件。Hadoop 集群包含一个 NameNode 和大量 DataNode。DataNode 通常以机架的形式组织,机架通过一个交换机将所有系统连接起来。Hadoop 的一个假设是:机架内部节点之间的传输速度快于机架间节点的传输速度。

       百度百科-Hadoop

相关推荐
一周热点