1.Unity3D 导出的源码y源apk进行混淆加固、保护与优化原理(防止反编译)
2.得到unitypackage源码之后怎么弄成游戏
3.Unity Project Tiny 编译到微信小游戏
4.URP(渲染管线定义,码变源码解析)
5.UGUI源码介绍
6.unity urp源码学习一(渲染流程)
Unity3D 导出的成游apk进行混淆加固、保护与优化原理(防止反编译)
某讯手游保护系统采用了一套方法,源码y源其中包括对Unity3D引擎手游的码变保护方案。该方案对Dll文件的成游代刷建站源码保护措施包括对变量名、函数名、源码y源类名进行加密混淆处理,码变以提升静态分析的成游难度。
尽管可以通过动态分析改源码刷机或hook libc.so中的源码y源execve函数来绕过该保护方案,但本文主要讲解如何从内存中获取Assembly-CSharp.dll和Assembly-CSharp-firstpass.dll文件。码变绕过保护后,成游启动GameGuardian,源码y源在游戏Logo出现时附加到游戏上,码变并在登录页面通过内存搜索值的成游方式搜索PE文件Dos头的特征码。记录下第一个值和最后一个的值,然后进行dump操作。
保存完毕后,可以从手机上拉取文件到本地。使用get_dll_from_bin.exe工具从bin文件中dump出所有的开吧源码网dll文件,并用dnSpy打开查看是否存在目标dll文件。如果不存在,可能需要使用editor打开文件,修复被清零的PE头前字节,然后通过get_dll_from_bin.exe操作修复的bin文件。
经过操作后,可以获取到与Assembly-CSharp.dll和Assembly-CSharp-firstpass.dll大小相同的文件。将这两个文件拖入dnspy中,可以看到3.dll是目标文件Assembly-CSharp.dll,而.dll是Assembly-CSharp-fristpass.dll。至此,所有目标文件已获取完毕。
最后,分享一款好用的工具——ipaguard,用于对程序进行加固。Ipa Guard是一款功能强大的ipa混淆工具,可以直接对ipa文件进行混淆加密,保护代码、代码库、怎么下载代源码资源文件等。通过设置,可以对函数名、变量名、类名等关键代码进行重命名和混淆处理,降低代码的可读性,增加破解反编译难度。此外,还可以修改、资源、配置等文件的名称和md5值。
在使用混淆器后,还需要进行加固以防止反编译。导入自己的包,选择好混淆后的包,等待上传、加固、下载完成后,即可导出经过混淆和加固的爱支付程序源码安全包。
得到unitypackage源码之后怎么弄成游戏
导进unity之后检查代码有无问题,会不会报错。然后点击运行你这个游戏看看有没有什么问题,之后想导出APP就在bulidsetting 处导出APP就好了记得设置好选项,如果是到处iphone还需要mac才可以,谢谢
Unity Project Tiny 编译到微信小游戏
介绍了一个名为hwei/UnityProjectTinyToWeapp的项目,旨在验证Unity Project Tiny能否被编译为微信小游戏。该项目通过一系列改造步骤来实现这一目标。
首先,对com.unity.tiny.web@0..0-preview.1包进行了修正,以确保Tiny的编译结果兼容微信小程序环境。
接着,对Tiny3D.js进行了改造,特别注意删除了编译结果中第一行的var Module = Module;。这一问题暂时无法通过修改Unity包源码解决。
为了适应微信小程序的特殊需求,使用了/finscn/weapp-adapter替代默认weapp-adapter。这个替代品支持加载本地包文件,并且其修改过程较为便捷。清远隔深圳源码
改造过程中,修改了XMLHttpRequest.js文件中的'filePath': url,将其更改为'filePath': url + '.scene',以确保加载场景文件的正确路径。
Tiny3D.global.js文件相当于Tiny3D.html所执行的任务,它在项目中扮演关键角色。
最后,game.js作为微信小游戏的入口,负责依次加载相关JS文件,并确保加载顺序的正确性,这是实现项目目标不可或缺的环节。
以上步骤共同构成了对Unity Project Tiny的微信小游戏适配过程,旨在解决兼容性和功能实现上的挑战,实现从Unity到微信小游戏的顺利过渡。
URP(渲染管线定义,源码解析)
本文详细解析了Unity渲染管线(URP)的内部工作原理和源码结构,深入探讨了URP如何实现高效的渲染流程和丰富的渲染特性。首先,我们介绍了UnityEngine.CoreModule和UnityEngine.Rendering.Universal命名空间的基本概念,理解了它们在URP中的角色。然后,通过查找CreatePipeline方法和分析UniversalRenderPipeline实例的内部结构,揭示了URP实例化和初始化的过程。
在渲染管线实例阶段,我们聚焦于UniversalRenderPipeline实例的Render方法,以及它在每帧执行的任务,特别是Profiling器的使用,这为性能优化提供了重要的工具。接着,文章深入探讨了ScriptableRenderer类,它实现了渲染策略,包括剔除、照明以及效果支持的描述,展示了其在渲染过程中如何与摄像机交互。
对于渲染过程的细节,文章详细说明了从设置图形参数、执行剔除、初始化光照、执行渲染Pass到后处理阶段的流程。特别关注了渲染Pass的执行,以及如何通过自定义RenderPass来扩展URP的功能。在渲染结束后,文章还介绍了如何使用ProfilingScope进行性能分析,为优化渲染管线提供了实用的工具。
综上所述,本文以深入的技术细节,全面解析了Unity URP渲染管线的内部机制,旨在帮助开发者更好地理解URP的实现原理,进而优化其应用中的渲染性能。
UGUI源码介绍
本文提供对Unity UI系统(UGUI)源码的概览,内容主要来自官方文档。
UGUI主要由EventSystem和UI两部分构成。
EventSystem部分包含输入模块和射线投射器。输入模块用于配置事件系统的主要逻辑,提供不同平台的开箱即用选项,支持各类输入系统如触控、控制器、键盘和鼠标,并将事件分发至对应组件。射线投射器则用于检测事件位置,决定事件传递至的UI元素。
UI部分结构相对复杂,包含多个类和接口,如IMaterialModifier和IndexedSet等。IMaterialModifier接口允许修改用于渲染的Material,IndexedSet是一种结合List和Dictionary实现的自定义容器,提供快速移除和插入元素的功能,但牺牲了顺序和序列化的友好性。
总之,UGUI源码通过模块化设计和接口定义,为开发者提供了丰富的UI构建和事件处理能力。
unity urp源码学习一(渲染流程)
sprt的一些基础:
绘制出物体的关键代码涉及设置shader标签(例如"LightMode" = "CustomLit"),以确保管线能够获取正确的shader并绘制物体。排序设置(sortingSettings)管理渲染顺序,如不透明物体从前至后排序,透明物体从后至前,以减少过绘制。逐物体数据的启用、动态合批和gpuinstance支持,以及主光源索引等配置均在此进行调整。
过滤规则(filteringSettings)允许选择性绘制cullingResults中的几何体,依据RenderQueue和LayerMask等条件进行过滤。
提交渲染命令是关键步骤,无论使用context还是commandbuffer,调用完毕后必须执行提交操作。例如,context.DrawRenderers()用于绘制场景中的网格体,本质上是执行commandbuffer以渲染网格体。
sprt管线的基本流程涉及context的命令贯穿整个渲染流程。例如,首次调用渲染不透明物体,随后可能调用渲染半透明物体、天空盒、特定层渲染等。流程大致如下:
多相机情况也通过单个context实现渲染。
urp渲染流程概览:
渲染流程始于遍历相机,如果是游戏相机,则调用RenderCameraStack函数。此函数区分base相机和Overlay相机:base相机遍历渲染自身及其挂载的Overlay相机,并将Overlay内容覆盖到base相机上;Overlay相机仅返回,不进行渲染操作。
RenderCameraStack函数接受CameraData参数,其中包含各种pass信息。添加pass到m_ActiveRenderPassQueue队列是关键步骤,各种pass类实例由此添加至队列。
以DrawObjectsPass为例,其渲染流程在UniversialRenderer.cs中实现。首先在Setup函数中将pass添加到队列,执行时,执行队列内的pass,并按顺序提交渲染操作。