1.Scala基础——常用数据结构
2.scala—模式匹配
3.Scala3 浅尝
4.Gradle jvm插件系列4 scala插件权威详解
5.scala manifeståclassmanifestçåºå«
6.Scala中的码解WrappedArray源码详解
Scala基础——常用数据结构
“大家都在这里做什么?”“不做什么。就是码解等夏天结束。”
从前到现在,码解Scala入门指引中我们已经介绍了Scala的码解基本语法,以及Scala函数进阶中的码解一些简单函数式编程用法。
然而,码解易语言下载器源码仅仅了解基本语法并不足以掌握一门语言。码解为了熟练运用Scala,码解我们还需要深入了解其数据结构。码解
因此,码解本次文章将介绍Scala中常用的码解数据结构。
Scala中常用的码解数据结构包括Array、Tuple、码解可变和不可变的码解Seq、Set和Map等。码解以下是Scala常用数据结构的大致介绍,以及详细继承关系和实现,可参考源码。
Tuple是可以通过下标取值的固定不变的结构,通常用于函数的多个返回值。Tuple最多可以包含个元素,即Tuple。
Array是一个固定长度的集合,创建时需要指定元素的泛型集合的长度。与Java中的数组类似,但具有更多的磁力链源码语法糖。支持在原数组的某个位置上更新元素,并在头部或末尾添加一个或多个元素。函数操作的返回值是新的数组,但原数组保持不变。
ArrayBuffer相对于Array,长度和元素都是可变的。
Seq是有序队列,不可变的List是Seq的一种实现,其长度和元素都不可变。任何更新操作都会返回一个新的List,而原List保持不变。List是基于链表的实现,数据结构更符合栈的LIFO特性,对于头部元素的插入和删除性能更好。
Queue是对List的进一步封装,具有FIFO特性。
不可变的Set是不可重复元素集合,支持集合的交集、并集和差集等运算。可变的Set则允许元素重复。
不可变的Map是一组Key不重复的键值对,当Key重复时,后面的Key对应的Value会覆盖前面的。可变的Map允许Key重复。
为了更好地了解Scala数据结构的图片特效源码使用,以下是一个简单的词频统计例子。给定一些句子,统计单词出现的频率,并按频率排序输出。
总结:Scala中常见的集合包括Tuple、Array、Seq、Set和Map等结构,其中Array、Seq、Set、Map都有对应的可变和不可变的结构。Scala对这些常见的数据结构进行了大量封装,方便我们进行数据加工。
scala—模式匹配
Scala的模式匹配功能类似于Java的switch语句,但使用match关键字来声明,通过case关键字定义各个分支。匹配过程按顺序进行,如果没有匹配到任何一个case,就会执行case_分支,这类似于Java的default。但需要注意,case _后面接if语句并非默认匹配,而是添加了一个条件判断。 Scala的飞鸟娱乐源码模式匹配功能远超Java,特别是在Spark源码中广泛应用。它可以匹配多种类型,包括:类型匹配:Scala允许在每个case后进行类型判断,超越了Java仅能通过isInstanceOf或asInstanceOf进行单一类型的匹配。
数组匹配:case分支可以处理数组的匹配。
列表匹配:列表的模式匹配也得到了支持。
元组匹配:元组在模式匹配中也有对应的处理。
Option匹配:Scala中的Option类型,表示可能有值(Some)或无值(None),常用于判断变量状态,通过其unapply方法进行匹配。
对象匹配则依赖于unapply方法,如果返回Some集合则匹配成功,反之失败。此外,Scala的case类(一种特殊类)为模式匹配提供了便利,它自动生成一系列方法,如apply、unapply等,且与之关联的伴生对象(object)定义了apply方法以接收构造函数参数,生成case类实例。 但需注意,case类匹配时需要提供参数,因为它们本质上还是类。在使用时,条码生成源码务必确保提供正确的参数。Scala3 浅尝
自从Scala3于年5月日正式发布以来,已经更新了多个小版本,预计很快将迎来3.2.0版本。我过去有较多的Scala2./2.使用经验,但最近没有实际项目可用,因此没有机会实际体验Scala3。最近有空闲时间,将一些库迁移到Scala3,记录一些体会。
在学习新的编程语言时,一个好的IDE支持能极大提高效率。我之前在IDEA中编写Scala2代码。目前IDEA对Scala3的支持还处于可用阶段,但还有不少不足,期待在未来的版本中得到优化。当前IDE水平对Scala3推广仍然存在阻碍,因为IDE的依赖度非常高。
在迁移过程中,发现大多数Scala2代码可以简单迁移至Scala3,甚至直接复制源代码。官方提供了良好的迁移指南。但在迁移Scala-sql和编写新wsql库时,我选择放弃Scala2兼容语法,以亲身体验Scala3的新风格。虽然Macros迁移较为困难,Scala3的Macros实现与Scala2不兼容,API概念虽相似但API完全不同。我花了大约两个周末完成第一个Macro迁移,随后速度加快,逐渐掌握了窍门,并整理了文档,准备进一步分享。
调试Macros时,善用IDE的调试器,了解各个数据结构至关重要。在IDEA中开启远程调试,可以将sbt命令执行时的宏代码调试起来。结合Macro和inline是有趣实践,Scala-sql在2.0.X版本中生成的ResultSetMapper存在开销,但在Scala3中尝试结合Macro和inline,实现了“zero-cost”的ResultSetMapper。Java框架往往忽视开销,Scala-sql生成的代码质量更优,享受编译时期静态类型检查带来的好处。
在开发新接口自动化测试平台时,考虑使用Scala DSL来提供简单易用的用户界面。Scala3的Context Function简化了DSL编写,具体案例完成后将提供演示。此外,Scala3的Null Safe特性尚在实验阶段,我对其非常感兴趣。在Java中,null和NPE是普遍的错误使用模式,Kotlin/Dart等语言拥抱了Null Safe特性。利用这个新特性,发现了一些Scala-sql中没有妥善处理null的问题,当前将其放入scala3-nullsafe分支,待稳定后合并到master分支。
Gradle jvm插件系列4 scala插件权威详解
Scala插件是Gradle JVM插件的重要扩展,它专为Scala项目设计,支持混合编译Java和Scala代码。通过双向依赖关系,你可以自由选择使用哪种语言编写,根据需要转换代码。此外,它还允许你利用API/实现分离,利用java-library插件为Scala项目提供额外功能。
使用Scala插件非常简单,只需在构建脚本中包含相关配置。例如,你可以在示例1中找到如何引入和配置插件的基本步骤。它为项目添加了ScalaCompile和ScalaDoc任务,并对Java编译任务的依赖进行了调整。
项目布局方面,Scala插件假设存在可包含Scala和Java源代码的目录,但并不强制。自定义布局支持,如示例2所示。依赖管理上,生产代码需要声明scala-library或scala3-library_3,测试代码则分别添加到相应的配置。
配置Zinc编译器是关键步骤,Scala插件会自动推断或根据需要配置scalaClasspath,以确保编译器和工具的正确版本。对于不同版本的Gradle和Scala,兼容性表如表2提供了参考。
除了基本配置,Scala插件还允许添加编译器插件,扩展源集属性,并处理目标字节码级别和Java API版本,确保编译时的兼容性和效率。例如,表3列出了源集属性的更改,表4则解释了Scala编译器参数的计算规则。
在外部进程中编译和增量编译也是重要特性,它们能大幅减少编译时间。默认情况下,Scala插件启用增量编译,但可通过设置force属性强制重新编译所有代码。关于联合编译和依赖分析的细节,你可以在相关部分找到。
最后,Eclipse和IntelliJ IDEA集成则提供了与各自IDE的无缝集成,如添加Scala nature和Scala SDK,以支持Scala项目在这些开发环境中的顺畅工作。
scala manifeståclassmanifestçåºå«
Manifestæ¯scala2.8å¼å ¥çä¸ä¸ªç¹è´¨ï¼ç¨äºç¼è¯å¨å¨è¿è¡æ¶ä¹è½è·åæ³åç±»åçä¿¡æ¯ãå¨JVMä¸ï¼æ³ååæ°ç±»åTå¨è¿è¡æ¶æ¯è¢«âæ¦æâæçï¼ç¼è¯å¨æTå½ä½Objectæ¥å¯¹å¾ ï¼æ以Tçå ·ä½ä¿¡æ¯æ¯æ æ³å¾å°çï¼ä¸ºäºä½¿å¾å¨è¿è¡æ¶å¾å°Tçä¿¡æ¯ï¼scalaéè¦é¢å¤éè¿Manifestæ¥åå¨Tçä¿¡æ¯ï¼å¹¶ä½ä¸ºåæ°ç¨å¨æ¹æ³çè¿è¡æ¶ä¸ä¸æã
def test[T] (x:T, m:Manifest[T]) { ... }
æäºManifest[T]è¿ä¸ªè®°å½Tç±»åä¿¡æ¯çåæ°mï¼å¨è¿è¡æ¶å°±å¯ä»¥æ ¹æ®mæ¥æ´åç¡®çå¤æTäºãä½å¦ææ¯ä¸ªæ¹æ³é½è¿ä¹åï¼è®©æ¹æ³çè°ç¨è è¦é¢å¤ä¼ å ¥måæ°ï¼é常ä¸å好ï¼ä¸å¯¹æ¹æ³ç设计æ¯ä¸é伤ç¤ã好å¨scalaä¸æéå¼è½¬æ¢ãéå¼åæ°çåè½ï¼å¨è¿ä¸ªå°æ¹å¯ä»¥ç¨éå¼åæ°æ¥åè½»è°ç¨è ç麻ç¦ã
è·åclass manifestsç两ç§åºæ¬æ¹å¼:
1 def classOf[T <: Any](implicit m: scala.reflect.Manifest[T]): Class[T] = m.erasure.asInstanceOf[Class[Tï¼½
éè¿implicit m: scala.reflect.Manifest[T]声æä¸ä¸ªéå¼åæ°ï¼è¿æ ·scalaç¼è¯å¨è½å¨ç¼è¯æ¶æä¾Tçç±»åä¿¡æ¯äº
2 def classOf[T <: Any : Manifest] : Class[T] = manifest[T].erasure.asInstanceOf[Class[Tï¼½
å ¶ä¸ T <: Any : Manifestï¼æåæ两é¨åæ¥ç
T <: Any
T æ¯Anyçåç±»åï¼å³å¯ä»¥æ¯ä»»æåºæ¬ç±»åscala.AnyVal åå¼ç¨ç±»å scala.AnyRef)
T : Manifest ç¸å½äºå¯¹classOf æ¹æ³currying
éå¼å¢å åæ°å表å¦ä¸ï¼(implicit evidence$1: Manifest[T])ï¼
éè¿manifest[T] æ¹æ³å³å¯è·åManifestå®ä¾
å¯è§å½¢å¼1 åå½¢å¼2å®è´¨æ¯ä¸æ ·çã
åºç¨ï¼
1æ常è§çæ¯è·åç±»ååæ°çClassï¼å½¢å¦someMethod[Type]
å¦akkaä¸æºç ï¼ def actorOf[T <: Actor : Manifest]: ActorRef = actorOf(manifest[T].erasure.asInstanceOf[Class[_ <: Actorï¼½)
class Worker extends Actor {
def receive = {
case Work(start, nrOfElements) =>
self reply Result(calculatePiFor(start, nrOfElements)) // perform the work
}
}
å°±å¯ä»¥å¦æ¤ä½¿ç¨äºï¼ val workerActorRef = actorOf[Worker]
2 ç¼ç¨æ¹å¼å建èåæ°ç»
def evenElems[T: ClassManifest](xs: Vector[T]): Array[T] = {
val arr = new Array[T]((xs.length + 1) / 2)
for (i <- 0 until xs.length by 2)
arr(i / 2) = xs(i)
arr
}
scala> evenElems(Vector("a","b","c"))
res: Array[java.lang.String] = Array(a, c)
Scala中的WrappedArray源码详解
WrappedArray是Scala中的一个类,用于表示Array[T]。它的设计旨在方便地使用Java数组,并为Scala数组添加额外方法和功能。WrappedArray实现多个特质,如AbstractSeq、IndexedSeq、ArrayLike和CustomParallelizable,使其在多种上下文中与Scala集合类型一样使用。
WrappedArray的主要用法包括获取数组长度、访问数组元素、使用foreach遍历数组、将WrappedArray转换为Array、使用zipWithIndex获取元素及其索引、使用reduce求和、使用distinct去除重复元素、使用exists判断是否存在满足条件的元素以及使用toArray方法指定类型转换。
这段代码定义了`WrappedArray`抽象类,用于表示`Array[T]`类型的包装数组。它继承了多个特质以提供序列、索引访问、数组操作和并行操作支持。重要成员包括元素类型标签、数组长度、获取和更新元素的方法、底层数组、克隆对象、构建器创建新集合等。
这段代码的伴生对象包含辅助方法和具体实现类。它提供了创建空的`WrappedArray`实例、根据给定值创建实例、为隐式转换提供支持以在构建集合时生成`WrappedArray`实例、返回构建器用于构建`IndexedSeq`类型集合等功能。此外,还有针对引用类型和其他基本数据类型的实现类,提供相应的方法和属性。
通过使用`WrappedArray`伴生对象,可以创建和操作不同类型的包装数组。利用`WrappedArray`类,可以对数组进行封装,并进行序列、数组和并行操作。