1.这个网站真的外挂太香了!居然可以免费使用AI聊天工具和“智能AI聊天助手”项目源码!源码源码!辅助!外挂
2.AI与PDE(七):AFNO模型的源码源码源代码解析
3.“枪枪爆头”!用Python写个了使命召唤外挂
4.关于AI,辅助FileWrite源码分享8个简单又强大的外挂开源工具
5.OpenAI 开源的免费 AI 语音转文字工具 - Whisper,一步一步本地部署运行
6.AI编程可视化Java项目拆解第二弹,源码源码AI辅助生成方法流程图
这个网站真的辅助太香了!居然可以免费使用AI聊天工具和“智能AI聊天助手”项目源码!外挂!源码源码!辅助
在AI技术日益盛行的外挂今天,许多开发者都在寻找免费且好用的源码源码AI工具。我经过三个月的辅助探寻,终于发现了一个宝藏网站——云端源想!它不仅提供免费的AI聊天工具,还有令人惊喜的项目源码可以领取,对于编程新手和进阶者来说,简直是福音!
这个网站近期已正式上线,我强烈推荐的原因有三:首先,免费AI聊天工具和源码的双重福利,对于需要项目实战和提升技能的开发者来说,就像是及时雨;其次,网站的“微实战”版块提供了针对性强、价格亲民的项目实战项目,如商城支付功能,能快速提升开发效率;再次,智能AI工具中的问答功能尤其实用,能帮助解决写代码时的难题。
在社区动态中,你可以找到休息时的轻松分享,而在编程体系课部分,虽然与其他网站相似,但云端源想的提炼知识点设计使得学习更加有针对性。在线编程功能则提供了协作开发的平台,而论坛则汇集了高质量的技术文章,供你参考和学习。
总的微交易源码作用来说,云端源想网站不仅提供了丰富的免费资源,还通过实用的工具和学习资源,帮助开发者提升技能,是值得推荐的工具平台。别犹豫,赶快通过下方链接去体验这个网站的福利吧!
AI与PDE(七):AFNO模型的源代码解析
本文旨在解析AFNO模型的源代码,帮助读者理解模型细节与主干结构。首先,AFNO模型的主干框架在afnonet.py文件中定义,通过类AFNONet实现。模型的核心功能封装在多个类与函数中,依据代码注释逐步解析。
在代码中,forward_features函数负责模型的核心逻辑,包括patch切割与mixing过程。这些操作由PatchEmbed类实现。位置编码self.pos_embed通过高斯初始化得到,增加模型的表示能力。
关键模块AFNO2d位于代码中,它基于FNO的原理,负责处理输入数据。AFNO2d模块在forward_features函数中通过循环调用,实现数据的转换与混合。
经过数个L layer处理后,模型进入类似解码器的结构,用于将中间结果映射为目标结果。这一过程通过self.head(x)实现,以解决特定分类问题。
本文通过梳理代码流程与结构图,直观展示了AFNO模型的工作原理。读者可参考AFNO的GitHub源代码与论文,深入理解细节。后续文章将继续探讨基于AFNO模型框架的其他应用,如FourCastNet。
“枪枪爆头”!用Python写个了使命召唤外挂
最近我看到一个视频,叫做《警惕AI外挂!我写了一个枪枪爆头的净流入源码公式视觉AI,又亲手“杀死”了它》。这个视频介绍了国外有人在使命召唤游戏中开发了一个AI程序,实现了自动瞄准功能。与传统外挂不同,该程序无需访问游戏内存或向服务器发送作弊指令,而是通过计算机视觉分析游戏画面,定位敌人,精确移动准星,操作方式与人类玩家相同,反外挂系统无法检测到它的存在。此AI程序还具有跨平台通用性,支持Xbox、PS4、手机等不同平台,只需将画面接入模型即可实现“枪枪爆头”。这引起了我对AI外挂的极大关注。
为了实现这个AI自动瞄准功能,需要设计一个核心功能。首先,我们需要训练一个人体关节点检测的AI视觉模型,将游戏画面实时输入模型,获取游戏角色各部位的像素位置,确定瞄准点并移动鼠标到该位置。视频中提到了使用High-Resoultion Net(HRNet)进行人体关节点检测,该模型在高分辨率特征图上进行多尺度融合与特征提取,效果较好。
训练人体关节点检测模型的步骤包括:安装HRNet代码库,下载COCO数据集,配置环境并进行模型训练。训练代码示例展示了如何在模型中输入数据,进行损失计算和反向传播,以及如何在训练过程中记录损失和精度。
为了实时获取瞄准点坐标,我们需要实时读取屏幕画面。使用pyautogui库可以实现屏幕截图,根据需要调整截取区域。检测人体关节点后,根据游戏需求(如“枪枪爆头”),只需获取头部关键点坐标。天下无包源码通过构建人体关节点检测模型并应用到实时画面中,即可获取准确的瞄准点坐标。
在获取到坐标后,需要将鼠标移动到指定位置。使用pyautogui库可以轻松实现移动和点击操作。根据游戏需求,可以实现单击、双击等鼠标操作。
然而,面对AI外挂带来的威胁,我们应当思考如何防范。传统的反外挂方法可能难以应对AI程序的隐蔽性和准确性。解决这个问题需要通过算法检测异常操作,但实现难度较大。一个可能的解决方案是使用对抗样本,通过训练视觉AI识别错误,使其在面对真实游戏情况时出现误判。技术的发展需要在对抗与规范中不断前进。
以上内容介绍了AI外挂的概念、实现方法,以及防范AI外挂的思考。技术的边界在不断拓展,面对新的挑战,我们应当保持警惕并寻求有效的解决方案。虽然没有提供完整的项目源代码链接,但已详细描述了AI自动瞄准功能的实现过程和防范策略。
关于AI,分享8个简单又强大的开源工具
AI,是指利用人工智能技术处理的工具。今天,我将分享8个简单且功能强大的开源AI工具,它们可以满足我们搜索资源、修复内容、更改样式等需求。
首先,让我们来看一下Stock AI。它是一款有趣的搜索引擎,拥有超过万张高质量的、视频和音乐。同花顺 ctrl c源码输入关键词,即可搜索。如果不存在,它会通过AI自动生成相似。个人可以直接免费下载文件。
其次,DiceBear是一个面向设计师和开发人员的开源头像生成库。你可以使用它为个人资料、设计、网站或应用程序创建合适的头像。除了随机生成简单可爱的用户头像,还可以使用内置的PRNG创建确定性头像。项目还提供了API,供开发者接入调用。
再来是Avvvatars,这是一个轻量级开源的头像生成器。可以快速生成一款独特头像,拥有种颜色、种形状搭配。项目支持自定制,如使用阴影、更改大小、提供要显示的替代文本等操作,且可集成到Web项目中。
Photoshot是一款开源的AI头像生成器。可以上传个人头像,利用Stable Diffusion模型进行训练,生成拥有不同风格的个人头像。官网提供使用指南。
Lama Cleaner是一个图像修复工具,基于SOTA AI模型构建,功能强大。完全免费和开源,支持CPU、GPU、M1/2。可以快速去除、替换图像中的各种物体,如人物、字体、水印等,同时支持老照片修复、文本替换图像内容等功能。
One Last Image是一个在线生成器,可以将赛璐璐风格的动画截图或插画转换成One Last Kiss封面风格。用户可以自定义设置,包括线条处理方案、开关One Last Kiss风格、给画面暗部排铅笔调子、叠加类似One Last Kiss 光碟封面水印、初回限定盘面效果选项、线迹轻重、调子数量等。官网提供详细操作指南。
Pixel Art to CSS是一个基于React开发的像素艺术动画和绘图网络编辑工具,通过结合CSS的box-shadow和keyframes特性,实现了在线绘制像素风图像的需求。提供自定义调色板、来回切换、修改动画设置、保存或加载项目等功能。完成绘制后,可以将内容导出成GIF、静态图像或纯代码等信息,用于网站。
Watermark-Removal是一个开源的去水印解决方案,基于机器学习的图像修复方法,自动去除水印。处理后的与原图几乎一致,内容去除无痕迹。GitHub提供源代码。
以上这些AI工具,不仅简单易用,而且功能强大,可以满足各种处理需求。希望这些信息能帮助到您!
OpenAI 开源的免费 AI 语音转文字工具 - Whisper,一步一步本地部署运行
OpenAI 推出的开源免费工具 Whisper,以其出色的语音识别功能吸引了不少关注。这款模型不仅能够进行多语言的语音转文本,还能进行语音翻译和语言识别,实用价值极高。市面上许多语音转文字服务如讯飞语记等都收费,而Whisper作为开源选择,无疑是一个经济实惠且性能强大的解决方案。
想在本地体验Whisper,首先需要为Windows设备安装ffmpeg和rust。ffmpeg可以从ffmpeg.org下载并配置环境变量,而rust则可以从rust-lang.org获取并确保命令行可用。接着,创建一个python虚拟环境,安装Whisper所需的依赖库。
运行Whisper的过程相当直接。通过命令行,只需提供音频文件如"Haul.mp3",并指定使用"medium"模型(模型大小从tiny到large递增)。首次运行时,Whisper会自动下载并加载模型,然后开始识别并输出文本,同时将结果保存到文件中。如果想在Python代码中集成,也相当简单。
如果你对此技术感兴趣,不妨亲自尝试一下。项目的源代码可以在github.com/openai/whisper找到。这不仅是一次AI技术的体验,还可能开启语音转文字的新篇章。更多详情可参考gpt.com/article/的信息。
标签推荐:#AI技术 #OpenAI开源 #Whisper模型 #语音转文字 #ChatGPT应用
AI编程可视化Java项目拆解第二弹,AI辅助生成方法流程图
本文系列文章之一,旨在深入解析利用AI可视化Java项目的实践。在之前的分享中,我们探讨了AI在Java项目中的应用,该系列文章已在AI破局星球、知乎、掘金等平台发布。关注与支持是我们前行的动力。
本文聚焦AI生成方法的Mermaid流程图。Mermaid是一款基于文本的流程图与时序图生成工具,允许用户通过简洁的文本描述语言构建复杂图示,适用于Markdown编辑器和直接在浏览器中打开。
Mermaid的基本语法简单易懂,支持多种图形和布局,使描述流程与关系变得直观。借助Mermaid,可以将代码逻辑转换为可直接在浏览器中浏览的流程图,大大便利了用户对Java项目的理解。
AI如何绘制流程图?在获取方法源代码后,通过提问AI模型,如GPT,即可生成Mermaid格式的流程图。通过精心设计的提示词,AI能以自然语言形式,清晰地展示代码逻辑,避免技术性描述,聚焦业务语义。流程图中的每个节点都会被明确标注,如"开始"与"结束",并遵循特定的格式,确保信息的精准传达。
在AI绘制流程图的实践中,我们发现生成的图仅基于方法体代码,有时无法全面揭示方法的功能。为解决这一问题,可采用递归方式生成子方法的流程图,如在当前示例中,将对`alipayService.notify(params)`方法进一步分析,展示其内部流程,以实现更全面的理解。
通过上述方法,用户可以轻松地从项目入口开始,一路探索,直至所需内容,极大地降低了新团队成员的上手成本。在后续文章中,我们将分享如何生成项目的入口地图,敬请期待。
Autoware.io源码编译安装
要编译安装Autoware.io,首先请确保已安装ROS1,如Ubuntu .版本的Melodic。以下步骤将指导你完成依赖安装及源码编译过程。安装依赖
1. 对于CUDA的支持(可选但建议),你需要下载CUDA .0,链接位于developer.nvidia.com/cuda。安装时,遇到驱动安装询问时选择n,后续步骤默认安装即可。 2. 安装cudnn,从developer.nvidia.com/rd...获取并进行安装。在cuda目录下进行软链接配置,并通过验证测试。其他依赖安装
3. 安装eigen3.3.7,接着是opencv3,安装时需先安装依赖库,然后解压、配置和编译。源码下载与编译
4. 创建新的工作区,下载并配置工作区,然后下载Autoware.ai源码。 5. 使用rosdep安装依赖库,有CUDA版本和无CUDA版本两种编译方式。测试与问题解决
6. 下载并运行demo,可能遇到的问题包括编译错误和链接问题。问题1:calibration_publisher报错,需修改CMakeList.txt文件。
问题2:ndt_gpu编译错误,需替换Eigen3Config.cmake文件中的版本信息。
问题3:opencv链接问题,需要检查和调整。
问题4:rosdep更新慢,可通过修改源码和配置文件解决。
问题5:runtime manager花屏,需安装wxPython 4.和libsdl1.2-dev。
通过上述步骤,你应该能够成功编译并测试Autoware.io。如有任何疑问,查阅官方文档或社区论坛寻求帮助。AI辅助编程插件:Sourcegraph Cody
Sourcegraph Cody插件是一款免费的开源AI编码助手,提供代码编写、修复和自动完成功能,并能回答编码相关问题。Cody获取整个代码库的上下文,生成更好的代码,使用广泛的API、impl和习惯用法,同时减少代码混淆。虽然支持基本的聊天功能,但其专注于解决编程问题,不涉及与话题无关的对话。Cody适用于VS Code等开发工具,安装后需通过Sourcegraph账号授权。
以下是Cody插件的安装和使用步骤:
1. 访问Cody官网获取安装指导。
2. 插件安装后需授权,对于VS Code用户,通过登录Sourcegraph账号即可使用。
3. 对于其他IDE如IDEA,需安装插件后在设置中输入Access tokens。在Sourcegraph官网创建新的token密钥,保存到IDEA的Cody设置中。
4. 使用Cody时,只需输入代码问题或请求解释,如解释源码类的方法。
Cody插件提供免费使用,相比其他非官方插件,其功能和价值较高,适合编程人员作为日常辅助工具。通过集成Cody,可以提高代码开发效率,解决编程问题,推荐给广大编程爱好者和专业人士使用。