欢迎来到皮皮网网站!

【抽奖模块源码】【算命 java源码】【商城 spring源码】stl 线上源码_stl源码剖析最新版

时间:2025-01-04 08:38:00 来源:docker-ce源码

1.[stl 源码分析] std::sort
2.STL源码学习(3)- vector详解
3.STL 源码剖析:sort
4.STL源码剖析总结笔记(2):容器(containers)概览
5.STL源码分析之std::function
6.完整的上源C++库函数源代码哪里有下载?

stl 线上源码_stl源码剖析最新版

[stl 源码分析] std::sort

       std::sort在标准库中是一个经典的复合排序算法,结合了插入排序、源码快速排序、剖析堆排序的最新优点。该算法在排序时根据几种算法的上源优缺点进行整合,形成一种被称为内省排序的源码抽奖模块源码高效排序方法。

       内省排序结合了快速排序和堆排序的剖析优点,快速排序在大部分情况下具有较高的最新效率,堆排序在最坏情况下仍能保持良好的上源性能。内省排序在排序过程中,源码先用快速排序进行大体排序,剖析然后递归地对未排序部分进行更细粒度的最新排序,直至完成整个排序过程。上源在快速排序效率较低时,源码内省排序会自动切换至插入排序,剖析以提高排序效率。

       在实现上,std::sort使用了内省排序算法,并在适当条件下切换至插入排序以优化性能。其源码包括排序逻辑的实现和测试案例。排序源码主要由内省排序和插入排序两部分组成。

       内省排序在排序过程中先快速排序,然后对未完全排序的元素进行递归快速排序。当子数组的长度小于某个阈值时,内省排序会自动切换至插入排序。插入排序在小规模数据中具有较高的效率,因此在内省排序中作为优化部分,提高了整个排序算法的性能。

       插入排序在排序过程中,将新元素插入已排序部分的正确位置。这种简单而直观的算命 java源码算法在小型数据集或接近排序状态的数据中表现出色。内省排序通过将插入排序应用于小规模数据,进一步优化了排序算法的性能。

       综上所述,std::sort通过结合内省排序和插入排序,实现了高效且稳定的数据排序。内省排序在大部分情况下提供高性能排序,而在数据规模较小或接近排序状态时,插入排序作为优化部分,进一步提高了排序效率。这种复合排序方法使得std::sort成为标准库中一个强大且灵活的排序工具。

STL源码学习(3)- vector详解

       STL源码学习(3)- vector详解

       vector的迭代器与数据类型:vector内部的连续存储结构使得任何类型的数据指针都可以作为其迭代器。通过迭代器,可以执行诸如指针操作,如访问元素值。

       vector定义了两个迭代器start和finish,分别指向元素的起始和终止地址,同时还有一个end_of_storage标记空间的结束位置。vector的容量保证大于等于已分配元素空间,提供了获取空间大小的函数,如front和back的值以引用返回,更高效。

       空间配置原理:STL中的vector使用SGI STL容器的二级空间配置器。vector头部包含配置信息,如data_allocator作为空间配置器的别名。简单配置器(simple_alloc)是封装了高级和低级配置器调用的抽象类。

       构造函数与内存管理:vector通过空间配置器创建元素。构造函数允许预分配并初始化元素,fill_initialize用于调整空间范围,allocate_and_fill则分配空间并填充。这个过程涉及data_allocator的商城 spring源码allocate函数,分配空间并返回起始地址。

       vector析构时,调用deallocate函数释放空间。pop_back和erase方法会移除元素并销毁相应空间,clear则清除全部元素。insert操作复杂,根据元素数量和容器状态可能需要扩容。

       插入与扩展操作:push_back在末尾插入元素,如果空间不足,可能需要扩容。insert接受三个参数,根据情况处理插入操作,可能抛出异常并销毁部分元素。

STL 源码剖析:sort

       我大抵是太闲了。

       更好的阅读体验。

       sort 作为最常用的 STL 之一,大多数人对于其了解仅限于快速排序。

       听说其内部实现还包括插入排序和堆排序,于是很好奇,决定通过源代码一探究竟。

       个人习惯使用 DEV-C++,不知道其他的编译器会不会有所不同,现阶段也不是很关心。

       这个文章并不是析完之后的总结,而是边剖边写。不免有个人的猜测。而且由于本人英语极其差劲,大抵会犯一些憨憨错误。

       源码部分sort

       首先,在 Dev 中输入以下代码:

       然后按住 ctrl,统计页面源码鼠标左键sort,就可以跳转到头文件 stl_algo.h,并可以看到这个:

       注释、模板和函数参数不再解释,我们需要关注的是函数体。

       但是,中间那一段没看懂……

       点进去,是一堆看不懂的#define。

       查了一下,感觉这东西不是我这个菜鸡能掌握的。

       有兴趣的 戳这里。

       那么接下来,就应该去到函数__sort 来一探究竟了。

       __sort

       通过同样的方法,继续在stl_algo.h 里找到 __sort 的源代码。

       同样,只看函数体部分。

       一般来说,sort(a,a+n) 是对于区间 [公式] 进行排序,所以排序的前提是 __first != __last。

       如果能排序,那么通过两种方式:

       一部分一部分的看。

       __introsort_loop

       最上边注释的翻译:这是排序例程的帮助程序函数。

       在传参时,除了首尾迭代器和排序方式,还传了一个std::__lg(__last - __first) * 2,对应 __depth_limit。

       while 表示,当区间长度太小时,不进行排序。促销商城源码

       _S_threshold 是一个由 enum 定义的数,好像是叫枚举类型。

       当__depth_limit 为 [公式] 时,也就是迭代次数较多时,不使用 __introsort_loop,而是使用 __partial_sort(部分排序)。

       然后通过__unguarded_partition_pivot,得到一个奇怪的位置(这个函数的翻译是无防护分区枢轴)。

       然后递归处理这个奇怪的位置到末位置,再更新末位置,继续循环。

       鉴于本人比较好奇无防护分区枢轴是什么,于是先看的__unguarded_partition_pivot。

       __unguarded_partition_pivot

       首先,找到了中间点。

       然后__move_median_to_first(把中间的数移到第一位)。

       最后返回__unguarded_partition。

       __move_median_to_first

       这里的中间数,并不是数列的中间数,而是三个迭代器的中间值。

       这三个迭代器分别指向:第二个数,中间的数,最后一个数。

       至于为什么取中间的数,暂时还不是很清楚。

       `__unguarded_partition`

       传参传来的序列第二位到最后。

       看着看着,我好像悟了。

       这里应该就是实现快速排序的部分。

       上边的__move_median_to_first 是为了防止特殊数据卡 [公式] 。经过移动的话,第一个位置就不会是最小值,放在左半序列的数也就不会为 [公式] 。

       这样的话,__unguarded_partition 就是快排的主体。

       那么,接下来该去看部分排序了。

       __partial_sort

       这里浅显的理解为堆排序,至于具体实现,在stl_heap.h 里,不属于我们的讨论范围。

       (绝对不是因为我懒。)

       这样的话,__introsort_loop 就结束了。下一步就要回到 __sort。

       __final_insertion_sort

       其中某常量为enum { _S_threshold = };。

       其中实现的函数有两个:

       __insertion_sort

       其中的__comp 依然按照默认排序方式 < 来理解。

       _GLIBCXX_MOVE_BACKWARD3

       进入到_GLIBCXX_MOVE_BACKWARD3,是一个神奇的 #define:

       其上就是move_backward:

       上边的注释翻译为:

       __unguarded_linear_insert

       翻译为“无防护线性插入”,应该是指直接插入吧。

       当__last 的值比前边元素的值小的时候,就一直进行交换,最后把 __last 放到对应的位置。

       __unguarded_insertion_sort

       就是直接对区间的每个元素进行插入。

       总结

       到这里,sort 的源代码就剖完了(除了堆的那部分)。

       虽然没怎么看懂,但也理解了,sort 的源码是在快排的基础上,通过堆排序和插入排序来维护时间复杂度的稳定,不至于退化为 [公式] 。

       鬼知道我写这么多是为了干嘛……

STL源码剖析总结笔记(2):容器(containers)概览

       容器作为STL的重要组成部分,其使用极大地提升了解决问题的效率。深入研究容器内部结构与实现方式,对提升编程技能至关重要。本文将对容器进行概览,分为序列式容器、关联式容器与无序容器三大类。

       容器大致分为序列式容器、关联式容器和无序容器。其中序列式容器侧重于顺序存储,关联式容器则强调元素间的键值关系,而无序容器可以看作关联式容器的一种。

       容器之间的关系可以归纳为:序列式容器为基层,关联式容器则在基层基础上构建了更复杂的数据结构。例如,heap和priority容器以vector作为底层支持,而set和map则采用红黑树作为基础数据结构。此外,还存在一些非标准容器,如slist和以hash开头的容器。在C++ 中,slist更名为了forward-list,而hash开头的容器改名为了unordered开头。

       在容器的实现中,sizeof()函数可能揭示容器的内部大小对比。需要注意的是,尽管在GNU 4.9版本中,一些容器的设计变得复杂,采用了较多的继承结构,但实际上,这些设计在功能上并未带来太大差异。

       熟悉容器的结构后,我们可以从vector入手,探索其内部实现细节。其他容器同样蕴含丰富的学习内容,如在list中,迭代器(iterators)的设计体现了编程的精妙之处;而在set和map中,红黑树的实现展现了数据结构的高效管理。

       本文对容器进行了概览,旨在提供一个全面的视角,后续将对vector、list、set、map等容器进行详细分析,揭示其背后的实现机制与设计原理。

STL源码分析之std::function

       std::function是一个在C++中广泛应用的函数包装器,它允许你以类型安全的方式存储、复制和调用任何可复制构造的可调用目标,如普通函数、成员函数、类对象(重载了operator()的类的对象)、Lambda表达式等。通过使用std::function,可以避免使用函数指针时的类型不安全问题。

       然而,许多人对于std::function内部是如何存储这些可调用目标的实现过程感到好奇。本文将深入探讨std::function的源码,揭示它的实现机制。首先,我们来看一下std::function的基本用法和功能。然后,我们将分析其源码,了解它如何存储和管理这些可调用目标。

       在源码中,std::function是一个模板类,其核心成员变量_M_invoker存储了一个标准函数指针类型。这个指针并不直接管理可调用目标,而是负责调用存储在内部的可调用目标。实际的可调用目标则由类_Function_base::_M_functor管理。

       为了实现这一点,std::function使用一个名为function的构造函数,通过一个名为_M_init_functor的函数来初始化_M_invoker,从而将可调用目标链接到_M_invoker上。这个过程涉及到一个名为_Base_manager的内部类,它负责存储和管理可调用目标。

       在源码中,我们发现可调用目标的存储方式取决于其大小。对于小到足以在单个内存位置存储的目标,如普通函数指针,std::function直接使用_M_pod_data作为存储空间。而对于较大的目标,如Lambda表达式或类对象,它会动态分配内存来存储这些对象。

       通过仔细分析这些内部实现,我们可以看到std::function是如何在存储和调用可调用目标之间建立起复杂的链接。这种设计使得std::function成为了一个灵活且强大的工具,能够在C++程序中实现高度动态和类型安全的函数调用。

       总之,std::function通过巧妙地设计其内部实现,实现了对各种可调用目标的高效存储和调用。了解其源码可以帮助我们更好地利用std::function的强大功能,同时也能深入理解C++中类模板和动态内存管理的高级概念。

完整的C++库函数源代码哪里有下载?

       去官网吧

       /

       这里有C/C++标准库下载

       /tech/stl/download.html

       或直接下压缩包:/tech/stl/stl.tar

       boost

       /projects/boost/files/boost/1..0/

STL源码剖析9-set、multiset

       STL源码深入研究:set与multiset的内部结构详解

       1. 结论

       在C++标准模板库(STL)中,set和multiset是两种常用的数据结构,它们底层实现依赖于红黑树(rb tree)。set是一种无序的关联容器,不允许有重复元素,而multiset则允许元素重复,但仍然保持插入顺序。

       2. set的实现

       set内部的红黑树使用了stl_function.h中的仿函数模板参数,这个仿函数用于定义元素的比较规则。set类在stl_set.h文件中定义,它通过这个仿函数确保了元素的唯一性,保证了查找、插入和删除操作的高效性。

       3. multiset的特性

       与set不同,multiset在stl_multiset.h中定义,它允许元素重复,这主要通过维护每个元素在树中的多个实例来实现。与set一样,它也依赖红黑树的数据结构,但对元素的比较规则更为宽松,允许基于给定的比较仿函数进行重复元素的插入和查找。

更多相关资讯请点击【时尚】频道>>>