1.pythoni代ç (pythonç代ç )
2.深度学习目标检测系列:一文弄懂YOLO算法|附Python源码
3.Python时序预测系列麻雀算法(SSA)优化LSTM实现单变量时间序列预测(源码)
4.ç¨Python解çä¸ä¸ï¼
5.圆柱体计算(用Python)写源码?
6.Python实现KMeans(K-means Clustering Algorithm)
pythoni代ç (pythonç代ç )
pythonåºç¡ä»£ç æ¯ä»ä¹?源码
pythonå ¥é¨ä»£ç æ¯ï¼
defnot_emptyï¼sï¼ï¼
returnsandlenï¼sãstripï¼ï¼ï¼0
#returnsandsãstripï¼ï¼
#å¦æç´æ¥ååsãstripï¼ï¼é£ä¹så¦ææ¯Noneï¼ä¼æ¥éï¼å 为None没æstripæ¹æ³ã
#å¦æsæ¯Noneï¼é£ä¹Noneandä»»ä½å¼é½æ¯Falseï¼ç´æ¥è¿åfalse
#å¦æséNoneï¼é£ä¹å¤å®sãtripï¼ï¼æ¯å¦ä¸ºç©ºã
è¿æ ·åfilterè½è¿æ»¤å°Noneï¼""ï¼""è¿æ ·çå¼ã
åæ两é¨åçã第ä¸é¨åæ¯å¯¹é¿åº¦è¿è¡åºåãç¸å½äºå°±æ¯range(5)ä»çç»æå°±æ¯ãã第äºé¨åå°±æ¯å ·ä½çæåºè§åãæåºè§åæ¯ç¨numsçå¼è¿è¡æåºï¼reverse没ç³æå°±æ¯é»è®¤ååºãå°±æ¯ç¨nums(0å°4)çå¼è¿è¡æåºï¼æ ¹æ®è¿ä¸ªç»æè¿åçä¸ä¸ªrange(5)çæ°ç»ã
åºæ¬è¯æ³ï¼
Pythonç设计ç®æ ä¹ä¸æ¯è®©ä»£ç å ·å¤é«åº¦çå¯é 读æ§ãå®è®¾è®¡æ¶å°½é使ç¨å ¶å®è¯è¨ç»å¸¸ä½¿ç¨çæ ç¹ç¬¦å·åè±æååï¼è®©ä»£ç çèµ·æ¥æ´æ´ç¾è§ãå®ä¸åå ¶ä»çéæè¯è¨å¦CãPascalé£æ ·éè¦éå¤ä¹¦å声æè¯å¥ï¼ä¹ä¸åå®ä»¬çè¯æ³é£æ ·ç»å¸¸æç¹æ®æ åµåæå¤ã
python代ç æä¹åï¼python3.6代ç ï¼
cnt=0
whileTrue:
print("请è¾å ¥åæ°ï¼")
i=input()
if(noti):
print("è¾å ¥æ误ï¼")
print("å¦ç人æ°ï¼"+str(cnt))
inti;
min=max=score[0];
avg=0;
for(i=0;in;i++)
baiavg+=score[i];
if(score[i]max)?
è§èç代ç ï¼
Pythonéç¨å¼ºå¶ç¼©è¿çæ¹å¼ä½¿å¾ä»£ç å ·æè¾å¥½å¯è¯»æ§ãèPythonè¯è¨åçç¨åºä¸éè¦ç¼è¯æäºè¿å¶ä»£ç ãPythonçä½è 设计éå¶æ§å¾å¼ºçè¯æ³ï¼ä½¿å¾ä¸å¥½çç¼ç¨ä¹ æ¯ï¼ä¾å¦ifè¯å¥çä¸ä¸è¡ä¸åå³ç¼©è¿ï¼é½ä¸è½éè¿ç¼è¯ãå ¶ä¸å¾éè¦çä¸é¡¹å°±æ¯Pythonç缩è¿è§åã
ä¸ä¸ªåå ¶ä»å¤§å¤æ°è¯è¨ï¼å¦Cï¼çåºå«å°±æ¯ï¼ä¸ä¸ªæ¨¡åççéï¼å®å ¨æ¯ç±æ¯è¡çé¦å符å¨è¿ä¸è¡çä½ç½®æ¥å³å®ï¼èCè¯è¨æ¯ç¨ä¸å¯¹è±æ¬å·{ }æ¥æç¡®çå®åºæ¨¡åçè¾¹çï¼ä¸å符çä½ç½®æ¯«æ å ³ç³»ï¼ã
6个å¼å¾ç©å³çPython代ç å éåäº6个èªå·±è®¤ä¸ºå¼å¾ç©å³çpython代ç ï¼å¸æ对æ£å¨å¦ä¹ pythonçä½ ææ帮å©ã
1ãç±»æ两个æ¹æ³ï¼ä¸ä¸ªæ¯new,ä¸ä¸ªæ¯init,æä»ä¹åºå«ï¼åªä¸ªä¼å æ§è¡å¢ï¼
è¿è¡ç»æå¦ä¸ï¼
åæ¥çå¦ä¸ä¸ªä¾å
è¿è¡ç»æå¦ä¸ï¼
è¿éç»åºå®æ¹ç解éï¼initä½ç¨æ¯ç±»å®ä¾è¿è¡åå§åï¼ç¬¬ä¸ä¸ªåæ°ä¸ºselfï¼ä»£è¡¨å¯¹è±¡æ¬èº«ï¼å¯ä»¥æ²¡æè¿åå¼ãnewåæ¯è¿åä¸ä¸ªæ°çç±»çå®ä¾ï¼ç¬¬ä¸ä¸ªåæ°æ¯cls代表该类æ¬èº«ï¼å¿ é¡»æè¿åå¼ãå¾ææ¾ï¼ç±»å å®ä¾åæè½äº§è½å¯¹è±¡ï¼æ¾ç¶æ¯newå æ§è¡ï¼ç¶ååinitï¼å®é ä¸ï¼åªè¦newè¿åçæ¯ç±»æ¬èº«çå®ä¾ï¼å®ä¼èªå¨è°ç¨initè¿è¡åå§åãä½æ¯æä¾å¤ï¼å¦ænewè¿åçæ¯å ¶ä»ç±»çå®ä¾ï¼åå®ä¸ä¼è°ç¨å½åç±»çinitãä¸é¢æ们åå«è¾åºä¸å¯¹è±¡aå对象bçç±»åï¼
å¯ä»¥çåºï¼aæ¯testç±»çä¸ä¸ªå¯¹è±¡ï¼èbå°±æ¯objectç对象ã
2ãmapå½æ°è¿åç对象
mapï¼ï¼å½æ°ç¬¬ä¸ä¸ªåæ°æ¯funï¼ç¬¬äºä¸ªåæ°æ¯ä¸è¬æ¯listï¼ç¬¬ä¸ä¸ªåæ°å¯ä»¥ålistï¼ä¹å¯ä»¥ä¸åï¼ä½ç¨å°±æ¯å¯¹å表ä¸listçæ¯ä¸ªå ç´ é¡ºåºè°ç¨å½æ°funã
æ没æåç°ï¼ç¬¬äºæ¬¡è¾åºbä¸çå ç´ æ¶ï¼åç°åæ空äºãåå æ¯map()å½æ°è¿åçæ¯ä¸ä¸ªè¿ä»£å¨ï¼å¹¶ç¨å¯¹è¿åç»æ使ç¨äºyieldï¼è¿æ ·åçç®çå¨äºèçå åã举个ä¾åï¼
æ§è¡ç»æ为ï¼
è¿éå¦æä¸ç¨yieldï¼é£ä¹å¨å表ä¸çå ç´ é常大æ¶ï¼å°ä¼å ¨é¨è£ å ¥å åï¼è¿æ¯é常浪费å åçï¼åæ¶ä¹ä¼éä½æçã
3ãæ£å表达å¼ä¸compileæ¯å¦å¤æ¤ä¸ä¸¾ï¼
æ¯å¦ç°å¨æ个éæ±ï¼å¯¹äºææ¬ä¸å½ï¼ç¨æ£åå¹é åºæ ç¾éé¢çâä¸å½âï¼å ¶ä¸classçç±»åæ¯ä¸ç¡®å®çãæ两ç§æ¹æ³ï¼ä»£ç å¦ä¸ï¼
è¿é为ä»ä¹è¦ç¨compileå¤å两è¡ä»£ç å¢ï¼åå æ¯compileå°æ£å表达å¼ç¼è¯æä¸ä¸ªå¯¹è±¡ï¼å å¿«é度ï¼å¹¶éå¤ä½¿ç¨ã
4ã[[1,2],[3,4],[5,6]]ä¸è¡ä»£ç å±å¼è¯¥å表ï¼å¾åº[1,2,3,4,5,6]
5ãä¸è¡ä»£ç å°å符串"-"æå ¥å°"abcdefg"ä¸æ¯ä¸ªå符çä¸é´
è¿éä¹å»ºè®®å¤ä½¿ç¨os.path.join()æ¥æ¼æ¥æä½ç³»ç»çæ件路å¾ã
6ãzipå½æ°
zip()å½æ°å¨è¿ç®æ¶ï¼ä¼ä»¥ä¸ä¸ªæå¤ä¸ªåºåï¼å¯è¿ä»£å¯¹è±¡ï¼å为åæ°ï¼è¿åä¸ä¸ªå ç»çå表ãåæ¶å°è¿äºåºåä¸å¹¶æçå ç´ é 对ãzip()åæ°å¯ä»¥æ¥åä»»ä½ç±»åçåºåï¼åæ¶ä¹å¯ä»¥æ两个以ä¸çåæ°;å½ä¼ å ¥åæ°çé¿åº¦ä¸åæ¶ï¼zipè½èªå¨ä»¥æçåºåé¿åº¦ä¸ºåè¿è¡æªåï¼è·å¾å ç»ã
pythonå¿ èå ¥é¨ä»£ç æ¯ä»ä¹ï¼pythonå¿ è代ç æ¯ï¼
defnot_emptyï¼sï¼ï¼
returnsandlenï¼sãstripï¼ï¼ï¼0
#returnsandsãstripï¼ï¼
#å¦æç´æ¥ååsãstripï¼ï¼é£ä¹så¦ææ¯Noneï¼ä¼æ¥éï¼å 为None没æstripæ¹æ³ã
#å¦æsæ¯Noneï¼é£ä¹Noneandä»»ä½å¼é½æ¯Falseï¼ç´æ¥è¿åfalse
#å¦æséNoneï¼é£ä¹å¤å®sãtripï¼ï¼æ¯å¦ä¸ºç©ºã
è¿æ ·åfilterè½è¿æ»¤å°Noneï¼""ï¼""è¿æ ·çå¼ã
åæ两é¨åçã第ä¸é¨åæ¯å¯¹é¿åº¦è¿è¡åºåãç¸å½äºå°±æ¯range(5)ä»çç»æå°±æ¯ãã第äºé¨åå°±æ¯å ·ä½çæåºè§åãæåºè§åæ¯ç¨numsçå¼è¿è¡æåºï¼reverse没ç³æå°±æ¯é»è®¤ååºãå°±æ¯ç¨nums(0å°4)çå¼è¿è¡æåºï¼æ ¹æ®è¿ä¸ªç»æè¿åçä¸ä¸ªrange(5)çæ°ç»ã
pythonå¿ èå 容ï¼
1ãåéãæå¨ç¨åºæ§è¡è¿ç¨ä¸ï¼å¯åçéãå®ä¹ä¸ä¸ªåéï¼å°±ä¼ä¼´éæ3个ç¹å¾ï¼åå«æ¯å åIDï¼æ°æ®ç±»åååéå¼ã常éï¼æå¨ç¨åºæ§è¡è¿ç¨ä¸ï¼ä¸å¯åçéãä¸è¬é½ç¨å¤§ååæ¯å®ä¹å¸¸éã
2ãä¸ç¨åºäº¤äºãå¤æ¶åï¼æ们å»é¶è¡åé±ï¼éè¦æä¸ä¸ªé¶è¡ä¸å¡åççæ们æèªå·±çè´¦å·å¯ç è¾å ¥ç»ä»ï¼ç¶åä»å»è¿è¡éªè¯çæååï¼æ们åå°å款éé¢è¾å ¥ï¼åè¯ä»ã
éªå²çç°ä»£äººï¼ä¼ä¸ºå®¢æ·æä¾ä¸å°ATMæºï¼è®©ATMæºè·ç¨æ·äº¤äºï¼ä»èå代人åãç¶èæºå¨æ¯æ»çï¼æä»¬å¿ é¡»ä¸ºå ¶ç¼åç¨åºæ¥è¿è¡ï¼è¿å°±è¦æ±æ们çç¼ç¨è¯è¨ä¸è½å¤æä¸ç§è½ä¸ç¨æ·äº¤äºï¼æ¥æ¶ç¨æ·è¾å ¥æ°æ®çæºå¶ã
pythonå®ç¨ä»£ç
pythonå®ç¨ä»£ç å¦ï¼
abs(number)ï¼è¿åæ°åçç»å¯¹å¼ï¼cmath.sqrt(number)ï¼è¿åå¹³æ¹æ ¹ï¼ä¹å¯ä»¥åºç¨äºè´æ°ï¼float(object)ï¼å°å符串åæ°å转æ¢ææµ®ç¹æ°ã
Pythonæ¯ä¸ç§å¹¿æ³ä½¿ç¨ç解éåãé«çº§åéç¨çç¼ç¨è¯è¨ãPythonç±è·å °æ°å¦å计ç®æºç§å¦ç 究å¦ä¼çGuidovanRossumåé ï¼ç¬¬ä¸çåå¸äºå¹´ï¼å®æ¯ABCè¯è¨çå继è ï¼ä¹å¯ä»¥è§ä¹ä¸ºä¸ç§ä½¿ç¨ä¼ ç»ä¸ç¼è¡¨è¾¾å¼çLISPæ¹è¨ã
Pythonæä¾äºé«æçé«çº§æ°æ®ç»æï¼è¿è½ç®åææå°é¢å对象ç¼ç¨ã
Pythonæºç æ¯ä»ä¹ææï¼Pythonæºç ï¼Pythonsourcecodeï¼æçæ¯Pythonç¼ç¨è¯è¨çå®ç°ä»£ç ææºä»£ç ï¼å æ¬Python解éå¨ä»¥åæ ååºä¸ç模ååå ï¼æ¯ç¨Pythonè¯è¨ç¼åçæºä»£ç æ件éåã
Pythonæºç å为两é¨åï¼æ ¸å¿æºä»£ç åæ ååºæºä»£ç ãæ ¸å¿æºä»£ç æçæ¯Python解éå¨çæºä»£ç ï¼å³è¿è¡Pythonç¨åºç主è¦ç¨åºãæ ååºæºä»£ç æçæ¯Pythonçæ ååºï¼å æ¬å 置模åï¼å¦osãreãdatetimeçï¼ãæ ååºæ¨¡åï¼å¦mathãrandomãjsonçï¼ä»¥å第ä¸æ¹åºï¼å¦requestsãnumpyãpandasçï¼ã
对äºåå¦è æ¥è¯´ï¼Pythonæºç å¯¹å ¶æ¥è¯´æä¸å®çåèåå¦ä¹ ä»·å¼ãå¦ä¹ Pythonæºç å¯ä»¥å¸®å©äººä»¬æ´å¥½å°ç解Pythonè¯è¨çå·¥ä½åçåæºå¶ï¼ç解Pythonå®ç°ç»èï¼ç£¨ç»èªå·±ç代ç æ°´å¹³åè½åãä½æ¯ï¼ç±äºPythonæºç åºå¤§ä¸å¤æï¼æ以人们ä¸è¬ä¸ä¼ä»å¤´å¦ä¹ ï¼èæ¯éè¿å¦ä¹ Pythonæç¨ãåèææ¡£çéæ¥ææ¡ç¸å ³ç¥è¯ã
深度学习目标检测系列:一文弄懂YOLO算法|附Python源码
深度学习目标检测系列:一文掌握YOLO算法 YOLO算法是计算机视觉领域的一种端到端目标检测方法,其独特之处在于其高效性和简易性。算法相较于RCNN系列,源码YOLO直接处理整个图像,算法预测每个位置的源码边界框和类别概率,速度极快,算法网站源码后门检测每秒可处理帧。源码以下是算法YOLO算法的主要特点和工作流程概述: 1. 训练过程:将标记数据传递给模型,通过CNN构建模型,源码并以3X3网格为例,算法每个单元格对应一个8维标签,源码表示网格中是算法否存在对象、对象类别以及边界框的源码相对坐标。 2. 边界框编码:YOLO预测的算法边界框是相对于网格单元的,通过计算对象中心与网格的源码相对坐标,以及边界框与网格尺寸的比例来表示。 3. 非极大值抑制:通过计算IoU来判断预测边界框的质量,大于阈值(如0.5)的框被认为是好的预测。非极大值抑制用于消除重复检测,确保每个对象只被检测一次。高频交易源码优化 4. Anchor Boxes:对于多对象网格,使用Anchor Boxes预先定义不同的边界框形状,以便于多对象检测。 5. 模型应用:训练时,输入是图像和标签,输出是每个网格的预测边界框。测试时,模型预测并应用非极大值抑制,最终输出对象的单个预测结果。 如果你想深入了解并实践YOLO算法,可以参考Andrew NG的GitHub代码,那里有Python实现的示例。通过实验和调整,你将体验到YOLO在目标检测任务中的强大功能。Python时序预测系列麻雀算法(SSA)优化LSTM实现单变量时间序列预测(源码)
这是我的第篇原创文章。
一、引言
麻雀算法(Sparrow Search Algorithm,SSA)是一种模拟麻雀群体行为的算法,适用于优化深度学习模型参数。开源js源码破解运用麻雀算法优化LSTM模型参数,能提升模型性能和收敛速度。优化后,模型性能和泛化能力得到增强,收敛速度加快,预测准确率提高。此外,麻雀算法还能发现更优的参数组合,高效搜索参数空间,提升模型泛化性能。以下是一个使用SSA优化LSTM超参数的简单步骤示例。
二、实现过程
2.1 读取数据集
2.2 划分数据集
共条数据,8:2划分:训练集,测试集。
2.3 归一化
2.4 构造数据集
2.5 建立模型进行预测
best_params:
test_predictions:
2.6 预测效果展示
测试集真实值与预测值:
原始数据、训练集预测结果和测试集预测结果:
作者简介:读研期间发表6篇SCI数据算法相关论文,目前在某研究院从事数据算法相关研究工作。结合自身科研实践经历,iapp网格列表源码不定期持续分享关于Python、数据分析、特征工程、机器学习、深度学习、人工智能系列基础知识与案例。致力于只做原创,以最简单的方式理解和学习,需要数据和源码的朋友关注联系我。
原文链接:麻雀算法(SSA)优化LSTM实现单变量时间序列预测(源码)
ç¨Python解çä¸ä¸ï¼
Python代ç åè¿è¡ç»æå¦ä¸ï¼è¾å ¥n=5ï¼è¾åºä¸º5ï¼ä¸1-3+5-7+9=5ç»æç¸ç¬¦ï¼æé纳~
épythonæºç ï¼
n = int(input())
sign = 1 # 表示符å·
sum = 0 # ån项å
for i in range(1, 2 * n, 2): # 第n项为2n-1
sum += sign * i
sign = -sign # 符å·æ£è´äº¤æ¿
print(sum)
圆柱体计算(用Python)写源码?
r, h = map(int, input('输入底面半径和柱高,以英文逗号隔开:').split(','))
l_dimianyuanzhou = r*2*3.
s_dimianji = 3.*r**2
s_chemianji = l_dimianyuanzhou*h
v_yuanzhutiji = s_dimianji*h
print(l_dimianyuanzhou.__round__(2))
print(s_dimianji.__round__(2))
print(s_chemianji.__round__(2))
print(v_yuanzhutiji.__round__(2))
Python实现KMeans(K-means Clustering Algorithm)
项目专栏:Python实现经典机器学习算法附代码+原理介绍
本篇文章旨在采用Python语言实现经典的机器学习算法K-means Clustering Algorithm,对KMeans算法进行深入解析并提供代码实现。KMeans算法是一种无监督学习方法,旨在将一组数据点划分为多个簇,基于数据点的相似性进行分类。
KMeans算法的优点包括简易性、实现效率以及对于大规模数据集的适应性。然而,它需要预先指定簇的野马冲刺指标源码数量k,并且结果的稳定性受随机初始化的影响。此外,KMeans在处理非凸形状的簇和不同大小的簇时效果不佳。
实现K-means Clustering Algorithm,本文将重点讲述算法原理、优化方式及其Python实现,避开复杂细节,专注于算法核心流程,适合初学者理解。
### KMeans算法原理
KMeans算法的基本步骤如下:
1. 初始化k个随机簇中心。
2. 将每个数据点分配给最近的簇中心。
3. 更新簇中心为当前簇中所有点的平均值。
4. 重复步骤2和3,直至簇中心不再显著变化或达到预设迭代次数。
### KMeans算法优化方式
1. **快速KMeans**:通过提前选择初始簇中心或采用随机抽样,加速收敛。
2. **MiniBatchKMeans**:使用小批量数据进行迭代,减小计算复杂度,适用于大规模数据集。
### KMeans算法复杂度
时间复杂度通常为O(nki),其中n为数据点数量,k为聚类中心数量,i为迭代次数。实际应用中,加速计算可采用上述优化方法。
### KMeans算法实现
为了便于理解,本文提供一个简化版的KMeans算法实现,不使用sklearn直接封装的模型,而是手动实现KMeans的核心逻辑,以帮助初学者更好地掌握算法流程。
**1. 导包
**主要使用Python内置库进行实现。
**2. 定义随机数种子
**确保实验结果的可重复性,对于随机初始化和选择训练样本具有重要意义。
**3. 定义KMeans模型
**实现模型训练(fit)和预测(predict)方法。
**3.3.1 模型训练
**通过不断迭代更新簇中心以最小化簇内方差。
**3.3.2 模型预测
**预测数据点所属簇,基于最近的簇中心。
**3.3.3 K-means Clustering Algorithm模型完整定义
**整合训练和预测方法,形成完整KMeans模型。
**3.4 导入数据
**使用自定义数据集,包含个样本,每个样本有个特征,7个类别。
**3.5 模型训练
**定义模型对象,指定k值,调用fit方法完成训练。
**3.6 可视化决策边界
**绘制样本的真实类别和KMeans划分后的类别,评估聚类效果。
通过可视化结果可以直观判断KMeans算法在数据集上的聚类性能。
### 完整源码
完整的KMeans算法Python代码实现,包括导入数据、模型训练、预测以及可视化决策边界的部分,旨在帮助读者理解KMeans算法的实现细节。
教你阅读 Cpython 的源码(一)
目录1. CPython 介绍
在Python使用中,你是否曾好奇字典查找为何比列表遍历快?生成器如何记忆变量状态?Cpython,作为流行版本,其源代码为何选择C和Python编写?Python规范,内存管理,这里一一揭示。 文章将深入探讨Cpython的内部结构,分为五部分:编译过程、解释器进程、编译器和执行循环、对象系统、以及标准库。了解Cpython如何工作,从源代码下载、编译设置,到Python模块和C模块的使用,让你对Python核心概念有更深理解。 2. Python 解释器进程 学习过程包括配置环境、文件读取、词法句法解析,直至抽象语法树。理解这些步骤,有助于你构建和调试Python代码。 3. Cpython 编译与执行 了解编译过程如何将Python代码转换为可执行的中间语言,以及字节码的缓存机制,将帮助你认识Python的编译性质。 4. Cpython 中的对象 从基础类型如布尔和整数,到生成器,深入剖析对象类型及其内存管理,让你掌握Python数据结构的核心。 5. Cpython 标准库 Python模块和C模块的交互,以及如何进行自定义C版本的安装,这些都是Cpython实用性的体现。 6. 源代码深度解析 从源代码的细节中,你会发现编译器的工作原理,以及Python语言规范和tokenizer的重要性,以及内存管理机制,如引用计数和垃圾回收。 通过本文,你将逐步揭开Cpython的神秘面纱,成为Python编程的高手。继续深入学习,提升你的Python技能。 最后:结论 第一部分概述了源代码、编译和Python规范,后续章节将逐步深入,让你在实践中掌握Cpython的核心原理。 更多Python技术,持续关注我们的公众号:python学习开发。