1.为什么我用gcc编译c程序到最后无法自动生成一个exe程序?
2.Linux驱动开发笔记(二):ubuntu系统从源码编译安装gcc7.3.0编译器
3.GCC编译过程详解
4.有了源代码后如何变成程序
5.Linux编译器-gcc/g++
6.使用gcc 编译C程序
为什么我用gcc编译c程序到最后无法自动生成一个exe程序?
gcc 是编c编 Linux 系统下面的 C 语言编译器。它和 WINDOWS 系统下面的译器源码译器源码 Microsoft Visual Studio C++ 6.0 不同,在 WINDOWS 系统下面对任何的分析一个源程序,经编译、编c编链接、译器源码译器源码到最终生成的分析亿源码 影视所有可执行程序必定都是以 *.exe 结尾的,*.exe 是编c编 WINDOWS 系统下面的可执行程序的后缀;而 gcc 对 C 语言进行编译,并没有规定可执行程序的译器源码译器源码具体名字到底是什么。举例如下:
$gcc my_program.c <cr>
如果在命令行中,分析没有带任何参数的编c编话,如果 C 语言源程序没有任何语法错误的译器源码译器源码话,那么生成的分析缺省的可执行文件就是:a.out;
$gcc my_program.c -o my_runfile <cr>
如果在命令行中,指定:-o 参数,编c编代表对 my_program.c 进行编译后,译器源码译器源码生成的分析可执行文件名为:my_runfile。
同理,在进行命令行编译过程中,只要指定了 -o 参数,那么你后面的可执行文件名,就随便由你自己决定了,这个就没有一定之规了。
Linux驱动开发笔记(二):ubuntu系统从源码编译安装gcc7.3.0编译器
在编译Ubuntu驱动时,由于使用的gcc版本为7.3.0,通过apt管理和下载都无法直接安装,因此需要从源码编译安装gcc7.3.0编译器。
GCC,作为GNU项目的重要组成部分,是一款遵循GPL许可证的自由软件。起初,它为GNU操作系统设计,如今已广泛应用于Linux、BSD、MacOS X等系统,甚至在Windows上也有应用。GCC支持多种处理器架构,ftp 内核源码如x、ARM和MIPS,并且支持多种编程语言,如C、C++、Fortran、Pascal等。
要从源码安装gcc7.3.0,首先需要下载源码包。下载地址为:mirrors.tuna.tsinghua.edu.cn...
安装过程分为几个步骤。首先,确保网络连接,因为需要依赖库,如libgmp-dev、libmpfr-dev和libmpc-dev。安装完这些后,不要卸载已有的gcc,因为可能会遇到问题。
下载并解压gcc-7.3.0.tar.gz,然后执行./configure。注意增加c和c++的配置,避免编译结果只有g++。配置完成后,进行make -j4编译,可能会遇到错误,如"fatal error: asm/errno.h: No such file or directory",这时需要修改头文件路径。
继续编译,可能会遇到"sanitizer_syscall_generic.inc::: error: '__NR_open' was not declared in this scope",解决方法是修正头文件链接。最后,编译成功后执行sudo make install,并确认安装版本。
在安装过程中,guid 生成 源码有两点需要注意:一是本地需要g++,否则编译时会出错,解决方法是安装gcc;二是安装后可能只有g++,没有gcc,此时需在./configure阶段添加c和c++的配置。
GCC编译过程详解
在使用GCC编译器编译名为 hello.c 的C程序时,GCC编译过程会经历多个步骤,包括预处理、编译、汇编和链接。下面详细解释GCC编译的过程:
假设有一个名为 hello.c 的C源代码文件。使用GCC编译器编译此文件通常涉及以下步骤:
预处理(Preprocessing)步骤中,GCC会扫描源代码文件。它处理以 # 符号开头的预处理指令,如 #include、#define 等。所有包含的头文件,例如标准库头文件 stdio.h,将被插入源代码中。宏定义也被展开。此过程生成一个中间文件,通常以 .i 或 .ii 为扩展名。
在单独执行预处理命令时,使用cpp命令。命令为:cpp hello.c -o hello.i。这会将预处理后的代码保存为 hello.i 文件。
编译(Compiling)阶段,GCC接受预处理后的代码,并进行词法分析、语法分析以及类型检查。C源代码被翻译成汇编语言,生成一个汇编代码文件,具有 .s 扩展名。
使用gcc命令单独执行编译步骤。linux wc源码命令为:gcc -S hello.i -o hello.s。这会将编译后的汇编代码保存为 hello.s 文件。
汇编(Assembling)阶段,汇编器将汇编代码文件转化为机器码指令,生成目标文件,通常具有 .o、.obj 或 .elf 扩展名。
使用as命令单独执行汇编步骤。命令为:as hello.s -o hello.o。这将汇编代码转换为二进制目标文件,并保存为 hello.o。
链接(Linking)阶段,链接器将目标文件与其他目标文件和库文件链接在一起,创建最终的可执行文件。链接器解析程序中使用的函数和符号,确保它们正确连接。最终生成的可执行文件通常没有扩展名(或在Windows上为 .exe)。
单独执行链接命令时,使用gcc。命令为:gcc hello.o -o hello。这将目标文件与所需库文件链接,生成可执行文件 hello。
整个编译过程演示了如何单独执行GCC编译过程的各个阶段,并通过使用不同命令控制每个阶段的输出。通过单独执行这些步骤,可以更详细地了解每个阶段的处理过程和生成的文件。然而,在实际开发中,通常使用一个简单的命令来完成整个编译过程。命令为:gcc hello.c -o hello。这会自动执行所有步骤,生成最终可执行文件 hello。
GCC编译器将源代码转换为可执行文件的过程涉及多个详细步骤,每个步骤都有其特定的asp源码 股票任务。这个过程确保代码正确性并使其可执行。每个阶段通过查看中间文件和目标文件深入了解编译器处理过程,进行调试或优化。步骤自动执行,只需运行合适的编译器命令就能完成整个过程。
有了源代码后如何变成程序
以GCC编译器为例,可以分为四步。
第一步是预处理,包括语法检查等工作。
gcc -P abc.
c第二步由源程序生产汇编语言代码。
gcc -S abc.c 会生成abc.s文件,这个文件里就是汇编代码。
第三步编译器生成目标代码,一个源文件生成一个目标代码。
gcc -c abc.c会生成abc.
o第四步连接器从目标代码生成可执行文件。gcc abc.o目标代码包括机器码和符号表(函数及变量名)。
连接器的主要作用是通过符号表在库文件和其他模块中找到在目标代码中引入或未定义的符号(函数及变量名),将几个目标代码合成可执行文件。
Linux编译器-gcc/g++
gcc/g++ 是 Linux 系统中的编译器,它们用于将源代码编译成可执行程序或库文件。在编译过程中,源代码需要经过预处理、编译、汇编、链接等步骤。
预处理阶段主要进行宏替换。使用 `-E` 参数,gcc 可以在预处理后停止编译过程,而 `-o` 参数用于指定输出文件。在使用 vim 进入到 `.i` 文件后,预处理会将源代码中的宏替换掉,生成新的文件。
头文件展开是将头文件中的内容拷贝到源代码中,这一过程发生在编译前,由系统自动完成。Linux 系统下默认的头文件路径为 `/usr/include/`,在需要使用某个特定头文件时,可直接查看该路径下的文件。
条件编译用于在不同的环境下选择性地包含特定代码。以 PyCharm 的安装为例,社区版和专业版功能不同,通过条件编译可以只包含专业版特有的功能代码,减少了维护的复杂性。
编译阶段中,gcc/g++ 会检查源代码的语法错误。若无错误,则会将代码编译成汇编语言。在 Linux 环境下,编译器会将源代码编译成汇编代码文件,通过 `-S` 参数可以指定输出文件。
汇编阶段将编译阶段生成的汇编代码文件转换为目标代码文件。这一过程由 `-c` 参数控制,并通过 `-o` 参数指定输出文件。
链接阶段将目标代码文件与所需的库文件结合,生成可执行文件或库文件。完成链接后,即可生成最终的可执行文件。
在 C 程序中,`printf` 函数的实现位于系统库文件 libc.so.6 中。当编译时未特别指定库路径时,gcc 会搜索默认的库路径 `/usr/lib` 来链接 libc.so.6。
静态库在编译链接时将库文件的代码全部加入到可执行文件中,生成的文件较大但运行时不再需要库文件。静态库的后缀名为 `.a`。相反,动态库在编译链接时不包含库文件代码,仅在程序运行时加载库文件,以减少系统的开销。动态库的后缀名为 `.so`,gcc 默认使用动态库。
gcc 提供了多种优化选项,如 `-O0` 表示不进行优化,而 `-O3` 为最高优化级别。`-g` 生成调试信息,方便使用 GNU 调试器进行调试。`-static` 和 `-shared` 用于控制静态链接和动态链接。
在编译时,使用 `-w` 可以关闭所有警告信息,而 `-Wall` 则会输出所有警告信息。通过这些选项,开发者可以更好地控制编译过程中的行为和生成的代码质量。
使用gcc 编译C程序
GNU编译器gcc是GNU项目中的标准C和C++编译系统,用于执行C、C++和Object C等语言程序的编译任务。
gcc的编译流程分为四个步骤:首先,使用gcc -E命令预处理源代码(HelloWorld.c)并生成中间文件(HelloWorld.i);其次,进行汇编处理(gcc -S HelloWorld.i -o HelloWorld.s);接着,将汇编代码编译为可重定位目标文件(gcc -c HelloWorld.s -o HelloWorld.o);最后,链接生成可执行文件(gcc HelloWorld.o -o HelloWorld)。编译器通过文件扩展名识别文件类型进行处理。
make是一个自动编译管理工具,它根据文件的修改时间自动执行编译,通过Makefile配置编译规则。例如,有两个文件hello.c和hello.h,编译命令为gcc -c hello.c,对应的Makefile应写为:make hello.o。make会执行指定的编译命令生成目标文件。
Makefile中变量的定义有递归展开和简单方式两种。递归展开可能导致无限循环,如VAR=var;简单方式则展开一次,如VAR:=var。变量在Makefile中的使用形式为$(VAR)。变量名通常由字母、数字和下划线组成,避免特殊含义字符。
make还提供了多种自动变量,如S*表示目标文件名(不包含扩展名),S+列出所有依赖文件等。在Ubuntu环境下,编写Makefile如下,执行make main命令即可编译程序。
总的来说,本文详细讲解了如何在Linux环境中使用gcc编译C程序,并介绍了make工具在自动化编译中的应用。
gcc是怎么写出来的?
关于GCC的编写过程,存在一些误解。第一版GCC并非用汇编完成。在0.9版本的源代码中,使用的确实是K&R C语言,并没有包含任何汇编代码。
GCC的源码中确实不存在与特定机器相关的代码,这说明了GCC的跨平台特性。
关于GCC的首次编译产出,当时可用的C编译器已十分丰富,RMS提到的“Free University Compiler Kit”在当时就是可行的选项。这个工具后来成为了MINIX使用的Amsterdam Compiler Kit。在互联网上可以找到其不新不旧的版本。
从历史来看,当时的编译器技术已经相当成熟,高级语言编写的编译器成为常见现象。在现代GCC源码中,asm部分主要来自两部分。第一部分是libgcc,它为在特定CPU指令集不直接支持某些运算时,提供生成inline代码的subroutine功能。第二部分是libffi,用于生成特定调用约定。
关于编译器优化方法与自动定理证明之间的联系,虽然存在一定的理论探讨,但在实际应用中,编译器优化主要集中在代码结构、指令调度、寄存器分配等方面,以提高程序的执行效率,而不是直接进行自动化定理证明。
GCC 源码编译安装
前言
本文主要介绍如何在特定条件下,通过源码编译安装GCC(GNU Compiler Collection)4.8.5版本。在Linux环境下,特别是遇到较老工程代码和低版本GCC适配问题时,网络仓库不可用,可通过下载源码进行本地编译安装。文章总结了该过程的步骤,以期帮助读者解决类似需求。
Linux系统版本:SUSE Linux Enterprise Server SP5 (aarch) - Kernel \r (\l)
GCC版本:gcc-4.8.5
步骤如下:
1,源码下载
直接在Linux终端执行:wget ftp.gnu.org/gnu/gcc/gcc...
或手动下载:ftp://gcc.gnu.org/pub/gcc/infrastructure
选取对应的gcc版本下载。
2,解压并进入目录
解压下载的tar包:tar -jxvf gcc-4.8.5.tar.bz2
进入解压后的目录:cd gcc-4.8.5
3,配置依赖库
联网情况下:cd gcc-4.8.5/
./contrib/download_prerequisites
无法联网时,手动下载依赖库(如mpfr、gmp、mpc)并上传到指定目录,然后分别解压、重命名并链接。
4,创建编译存放目录
在gcc-4.8.5目录下执行:mkdir gcc-build-4.8.5
5,生成Makefile文件
cd gcc-build-4.8.5
../configure -enable-checking=release -enable-languages=c,c++ -disable-multilib
推荐配置时,根据环境调整参数,如X_环境下的`--disable-libsanitizer`。
6,执行编译
make(可能耗时较长)
解决可能出现的问题,如libc_name_p和struct ucontext uc,通过参考gcc.gnu.org/git或直接覆盖相关文件。
7,安装GCC
在gcc-build-4.8.5目录下执行:make install
安装完成后,可直接解压并安装。
8,配置环境变量
执行命令:export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/root/gcc-4.8.5/mpc:/root/gcc-4.8.5/gmp:/root/gcc-4.8.5/mpfr
确保路径一致,执行 source /etc/profile 使环境变量生效。
9,检查安装情况
通过`gcc -v`和`g++ -v`验证GCC版本。
,库升级
遇到动态库未找到问题时,需升级gcc库,通过查找和替换最新库文件解决。
,卸载系统自带的gcc
以root用户执行:rpm -qa |grep gcc | xargs rpm -e --nodeps
,修改ld.so.conf文件
编辑文件:vi /etc/ld.so.conf,在最下面添加实际路径,如/usr/local/lib和/usr/local/lib。
执行 ldconfig /etc/ld.so.conf。
,修改GCC链接
确保GCC及其相关工具的正确链接,使用`ll /usr/bin/gcc*`和`ll /usr/bin/g++*`检查链接结果。
至此,GCC源码编译安装流程完成,可满足特定环境下的GCC版本需求。