1.DenseNet源码解读(pytorch官方)
2.深入理解Pytorch的网络网络BatchNorm操作(含部分源码)
3.caffe ä¸ä¸ºä»ä¹bnå±è¦åscaleå±ä¸èµ·ä½¿ç¨
4.PyTorch 源码解读之 BN & SyncBN:BN 与 多卡同步 BN 详解
5.darknet序列解读一:框架构成
6.caffe中bn层为什么要和scale层一起使用?
DenseNet源码解读(pytorch官方)
DenseNet源码解析:一个基于PyTorch实现的深度密集连接网络模型,提供了一系列预训练模型选项。源码源码首先,网络网络我们引入必要的源码源码库,如ReLU、网络网络卷积层、源码源码石材企业源码查询批量归一化和函数模块。网络网络DenseNet的源码源码核心是通过`_bn_function_factory`函数拼接前一层的特征,然后通过一系列的网络网络卷积块进行特征提取,包括1x1卷积、源码源码ReLU激活和3x3卷积,网络网络形成了密集层 `_DenseLayer`。源码源码该层可以设置内存高效模式以节省内存。网络网络在 `_DenseBlock` 中,源码源码通过循环堆叠指定数量的网络网络密集层,并在每个块之间插入降采样层 `_Transition` 以控制通道数量的增长。模型类 `DenseNet` 建立了整套网络结构,包括初始卷积层、多个密集块、过渡层以及最终的全局平均池化和全连接层。提供了针对不同配置(如densenet、densenet等)的预训练模型加载方法 `_densenet`,用户可以根据需求选择并加载预训练权重。
每个模型函数,如`densenet`,接受参数如预训练状态、进度条显示等,允许用户根据需要定制网络行为。总的来说,DenseNet的设计旨在通过密集连接和递增特征组合来提升模型性能,适用于图像识别等计算机视觉任务。
深入理解Pytorch的关于爱情的源码BatchNorm操作(含部分源码)
Pytorch中的BatchNorm操作在训练和测试模式下有所不同,特别是在涉及dropout时。Batch Normalization(BN)是深度学习中的重要技术,通过在神经网络中间层对输入数据进行标准化处理,解决协方差偏移问题。其核心公式包含对每个通道数据的均值和方差计算,规范化操作后进行仿射变换以保持模型性能。
在BN中,需要关注的参数主要包括学习参数gamma和beta,以及动态统计的running_mean和running_var。在Pytorch的实现中,如nn.BatchNorm2d API,关键参数包括trainning(模型是否在训练模式)、affine(是否启用仿射变换)、track_running_stats(是否跟踪动态统计)和momentum(动态统计更新的权重)。
训练状态会影响BN层的计算,当模型处于训练状态(trainning=True)时,running_mean和running_var会在每次前向传播(forward())中更新,而转为测试模式(mode.eval())则会冻结这些统计值。源码中的_NormBase类和_BatchNorm类定义了这些操作的细节,包括动态统计的管理。
对于自定义BN,可以重载前向传播函数,改变规范化操作的细节。总的来说,理解Pytorch的BatchNorm操作,需关注其在训练和测试模式中的行为,以及与模型训练状态相关的关键参数。
caffe ä¸ä¸ºä»ä¹bnå±è¦åscaleå±ä¸èµ·ä½¿ç¨
1) è¾å ¥å½ä¸å x_norm = (x-u)/std, å ¶ä¸uåstdæ¯ä¸ªç´¯è®¡è®¡ç®çåå¼åæ¹å·®ã2ï¼y=alphaÃx_norm + betaï¼å¯¹å½ä¸ååçxè¿è¡æ¯ä¾ç¼©æ¾åä½ç§»ãå ¶ä¸alphaåbetaæ¯éè¿è¿ä»£å¦ä¹ çã
é£ä¹caffeä¸çbnå±å ¶å®åªåäºç¬¬ä¸ä»¶äºï¼scaleå±åäºç¬¬äºä»¶äºï¼æ以两è è¦ä¸èµ·ä½¿ç¨ã
ä¸ï¼å¨Caffeä¸ä½¿ç¨Batch Normalizationéè¦æ³¨æ以ä¸ä¸¤ç¹ï¼
1. è¦é åScaleå±ä¸èµ·ä½¿ç¨ã
2. è®ç»çæ¶åï¼å°BNå±çuse_global_stats设置为falseï¼ç¶åæµè¯çæ¶åå°use_global_stats设置为trueã
äºï¼åºæ¬å ¬å¼æ¢³çï¼
Scaleå±ä¸»è¦å®æ top=alpha∗bottom+betatop=alpha∗bottom+betaçè¿ç¨ï¼åå±ä¸ä¸»è¦æ两个åæ°alphaalphaä¸betabeta,
æ±å¯¼ä¼æ¯è¾ç®åã∂y∂x=alpha;∂y∂alpha=x;∂y∂beta=1ã éè¦æ³¨æçæ¯alphaalphaä¸betabetaå为åéï¼é对è¾å ¥çchannelschannelsè¿è¡çå¤çï¼å æ¤ä¸è½ç®åç认å®ä¸ºä¸ä¸ªfloatfloatçå®æ°ã
ä¸ï¼å ·ä½å®ç°è¯¥é¨åå°ç»åæºç å®ç°è§£æscalescaleå±:
å¨Caffe protoä¸ScaleParameterä¸å¯¹Scaleæå¦ä¸å 个åæ°ï¼
1ï¼åºæ¬æååéï¼åºæ¬æååé主è¦å å«äºBiaså±çåæ°ä»¥åScaleå±å®æ对åºééçæ 注工ä½ã
2ï¼åºæ¬æåå½æ°ï¼ä¸»è¦å å«äºLayerSetup,Reshape ,ForwardåBackward ï¼å é¨è°ç¨çæ¶åbias_term为trueçæ¶åä¼è°ç¨biasLayerçç¸å ³å½æ°ã
3ï¼Reshape è°æ´è¾å ¥è¾åºä¸ä¸é´åéï¼Reshapeå±å®æ许å¤ä¸é´åéçsizeåå§åã
4ï¼Forward åå计ç®ï¼åå计ç®ï¼å¨BNä¸å½ç´§è·çBNçå½ä¸åè¾åºï¼å®æä¹ä»¥alphaä¸+biasçæä½ï¼ç±äºalphaä¸biaså为Cçåéï¼å æ¤éè¦å è¿è¡å¹¿æã
5ï¼Backward åå计ç®ï¼ä¸»è¦æ±è§£ä¸ä¸ªæ¢¯åº¦ï¼å¯¹alpha ãbetaåè¾å ¥çbottom(æ¤å¤çtemp)ã
PyTorch 源码解读之 BN & SyncBN:BN 与 多卡同步 BN 详解
BatchNorm原理 BatchNorm最早在全连接网络中提出,旨在对每个神经元的输入进行归一化操作。在卷积神经网络(CNN)中,这一原理被扩展为对每个卷积核的那种赌博平台源码输入进行归一化,即在channel维度之外的所有维度上进行归一化。BatchNorm带来的优势包括提高网络的收敛速度、稳定训练过程、减少过拟合现象等。 BatchNorm的数学表达式为公式[1],引入缩放因子γ和移位因子β,作者在文章中解释了它们的作用。 PyTorch中与BatchNorm相关的类主要位于torch.nn.modules.batchnorm模块中,包括如下的类:_NormBase、BatchNormNd。 具体实现细节如下: _NormBase类定义了BN相关的一些属性。 初始化过程。 模拟BN的forward过程。 running_mean、running_var的更新逻辑。 γ、β参数的更新方式。 BN在eval模式下的行为。 BatchNormNd类包括BatchNorm1d、BatchNorm2d、BatchNorm3d,它们的区别在于检查输入的合法性,BatchNorm1d接受2D或3D的输入,BatchNorm2d接受4D的输入,BatchNorm3d接受5D的输入。 接着,介绍SyncBatchNorm的实现。 BN性能与batch size密切相关。在batch size较小的场景中,如检测任务,内存占用较高,访问jsp输出源码单张显卡难以处理较多,导致BN效果不佳。SyncBatchNorm提供了解决方案,其原理是所有计算设备共享同一组BN参数,从而获得全局统计量。 SyncBatchNorm在torch/nn/modules/batchnorm.py和torch/nn/modules/_functions.py中实现,前者负责输入合法性检查以及参数设置,后者负责单卡统计量计算和进程间通信。 SyncBatchNorm的forward过程。 复习方差计算方式。 单卡计算均值、方差,进行归一化处理。 同步所有卡的数据,得到全局均值mean_all和逆标准差invstd_all,计算全局统计量。 接着,介绍SyncBatchNorm的backward过程。 在backward过程中,需要在BN前后进行进程间通信。这在_functions.SyncBatchNorm中实现。 计算weight、bias的梯度以及γ、β,进一步用于计算梯度。darknet序列解读一:框架构成
darknet项目工程结构包含了多个文件夹,包括3rdparty、cfg、data、files、include、如何看懂驱动源码pre-train-weighted、scripts以及src。3rdparty存放第三方库;cfg文件夹内存储各种配置文件,如网络配置文件和data配置文件;data文件夹类似标准C工程中的resource文件夹,用于存放数据,如voc数据集;files文件夹是我自己添加的,用于存放对darknet某些具体细节代码的详细说明;include文件夹存放darknet头文件,主要针对win系统;pre-train-weighted存放预训练权重文件;scripts存放一些脚本文件等;src文件夹是整个项目的核心,存放所有源代码,包括各种网络层结构和重要工具函数。
darknet框架的整体结构遵循一个固定流程,其核心代码逻辑可以简要表示为:网络配置文件中定义的batch和subdivisions参数用于将batch数据拆分成subdivisions份,在数据加载时一次性加载batch个数据,但在进行前向传播和反向传播时,每次仅利用batch/subdivisions个数据。这种设计旨在减轻GPU显存压力并实现类似大batch更新的效果,但与一次性处理所有batch数据存在区别,尤其是BN层的计算。
darknet框架的所有功能入口位于src/darknet.c文件中的main函数,支持目标检测、RNN和分类算法。虽然run_yolo()和run_detector()看似不同,实际上它们是同一功能,这是为了兼容旧版darknet框架。对于darknet来说,其核心在于yolo算法,尽管它支持分类任务,但由于数据增强操作有限,且与Python第三方库相比,darknet自身携带的增强操作不够丰富,训练分类网络效果并不理想。因此,推荐使用如pytorch框架进行图像分类任务。解读时,主要聚焦于检测算法,并详细解析了整个训练过程,包括解析配置文件、构建和初始化网络、加载数据以及训练网络等关键步骤。详细过程将包括对数据加载、网络初始化、数据增强、前向传播、反向传播以及参数更新等部分的深入分析。
本次解读涵盖了darknet框架的整体结构、核心设计原则、功能入口及其在目标检测任务中的实现细节。后续解读将更具体地分析darknet如何解析网络配置文件并初始化网络,为读者提供一个全面理解darknet框架的视角。
caffe中bn层为什么要和scale层一起使用?
1) 输入归一化 x_norm = (x-u)/std, 其中u和std是个累计计算的均值和方差。2)y=alpha×x_norm + beta,对归一化后的x进行比例缩放和位移。其中alpha和beta是通过迭代学习的。
那么caffe中的bn层其实只做了第一件事,scale层做了第二件事,所以两者要一起使用。
一,在Caffe中使用Batch Normalization需要注意以下两点:
1. 要配合Scale层一起使用。
2. 训练的时候,将BN层的use_global_stats设置为false,然后测试的时候将use_global_stats设置为true。
二,基本公式梳理:
Scale层主要完成 top=alpha∗bottom+betatop=alpha∗bottom+beta的过程,则层中主要有两个参数alphaalpha与betabeta,
求导会比较简单。∂y∂x=alpha;∂y∂alpha=x;∂y∂beta=1。 需要注意的是alphaalpha与betabeta均为向量,针对输入的channelschannels进行的处理,因此不能简单的认定为一个floatfloat的实数。
三,具体实现该部分将结合源码实现解析scalescale层:
在Caffe proto中ScaleParameter中对Scale有如下几个参数:
1,基本成员变量,基本成员变量主要包含了Bias层的参数以及Scale层完成对应通道的标注工作。
2,基本成员函数,主要包含了LayerSetup,Reshape ,Forward和Backward ,内部调用的时候bias_term为true的时候会调用biasLayer的相关函数。
3,Reshape 调整输入输出与中间变量,Reshape层完成许多中间变量的size初始化。
4,Forward 前向计算,前向计算,在BN中国紧跟着BN的归一化输出,完成乘以alpha与+bias的操作,由于alpha与bias均为C的向量,因此需要先进行广播。
5,Backward 反向计算,主要求解三个梯度,对alpha 、beta和输入的bottom(此处的temp)。
ConvNeXt详解
ConvNeXt是由FAIR团队近期提出的卷积神经网络架构,它凭借传统的卷积结构在ImageNet Top-1分类任务中取得了优异性能,与近年来流行的基于Transformer的视觉解决方案形成鲜明对比。这一成果得到了业界的广泛关注,包括何恺明、RGB和Yann LeCun等知名学者的支持。ConvNeXt并非创新复杂,而是通过组合已有的网络组件,如深度可分离卷积、逆瓶颈层和大卷积核等,经过大量实验调整,实现了高性能。通过学习ConvNeXt,研究者可以深入了解CNN和Transformer之间的竞争,并从实践层面观察它们的性能。
论文和源码链接:[arxiv.org/abs/....][github.com/facebookrese...] ConvNeXt的发展路径包括从ResNet-出发,逐步优化宏观设计、深度可分离卷积等五个角度,借鉴Swin Transformer的理念。训练策略的改进,如增加Epoch数、优化优化器、数据增强和正则化,显著提升了模型性能。在模型结构上,ConvNeXt对每个Stage的计算比例、Patchify Stem、分组卷积和逆瓶颈层进行了调整,引入大卷积核并进行了细致的细节优化,如GELU替换ReLU、减少激活函数和归一化层,以及BN和LN的使用,这些改进都促使模型精度提升至.5%。不同规模的ConvNeXt版本也展示了其在ImageNet-1K上的多样化性能。总的来说,ConvNeXt的成功证明了在视觉任务中,Transformer的突出表现并非源于理论优势,而是源于近年来优化技巧的积累,类似于ResNet-Timm的调参提升。尽管如此,Transformer在视觉领域的潜力仍值得探索,未来可能需要更适应图像任务的新型结构出现。
BatchNorm理解(含Pytorch部分源码)
深度学习中,数据归一化是关键。神经网络学习数据分布以在测试集上达到泛化效果。然而,若每个batch输入数据分布不同,即Covariate Shift,这会带来训练挑战。数据经过多层网络后,分布发生改变,形成Internal Covariate Shift,这进一步增加了下层网络学习的难度。为解决中间层Internal Covariate Shift问题,引入了Batch Normalization(BN)操作。
BN算法流程如下:
(1)计算输入批量数据的均值。
(2)计算输入批量数据的方差。
(3)对每个数据进行归一化。
(4)引入缩放变量和平移变量,通过训练更新,计算归一化后的值。
BN中均值方差计算基于张量数据,通常维度为[N, H, W, C]。其中N为batch_size,H和W为特征图尺寸,C为通道数。均值计算是每个通道内数字总和除以[N, H, W]。例如,对于[2,2,2,3]输入,代表2个batch,每个batch有3个特征图(通道数为3),每个特征图大小为2*2。以通道1为例,计算步骤如下:
均值计算公式为:均值=(所有数字总和)/ [N, H, W]。
最终获得三个通道的均值和方差,网络更新参数,为每一个channel对应一个缩放变量和平移变量。
在Pytorch中,BN通过_NormBase类和_BatchNorm类实现。_NormBase类定义BN相关的属性,_BatchNorm类继承自_NormBase,是BatchNorm2d实际调用的类。具体源码包括定义属性、计算均值和方差、归一化以及参数更新等关键步骤。
2024-12-29 17:53
2024-12-29 17:08
2024-12-29 16:43
2024-12-29 16:23
2024-12-29 16:12
2024-12-29 16:01
2024-12-29 15:44
2024-12-29 15:23