1.�����Դ��
2.ClickHouse之聚合功能源码分析
3.Underscore源码分析
4.阮一峰推荐学习 vue3 源码的聚题利器
5.有哪些开源的源码网站?
6.怎样开始阅读scikit-learn的源码?是否值得读
�����Դ��
深入探究Dify源码,揭示RAG核心机制的库源库关键环节 在对Dify的完整流程有了初步了解后,发现其RAG检索效果在实际部署中不尽如人意。码聚因此,合题针对私有化部署的聚题Dify,我结合前端配置和实现流程,库源库鑫迪社区源码详细解析了技术细节,码聚旨在帮助调整知识库配置或进行定制化开发。合题Docker私有化部署技术方案
本文重点聚焦于Dify docker私有化部署的聚题默认技术方案,特别是库源库使用Dify和Xinference的GPU环境部署。若想了解更多,码聚可查阅Dify与Xinference的合题集成部署教程。RAG核心流程详解
Extractor:负责原始文件内容的聚题提取,主要在api/core/rag/extractor/extract_processor.py中实现。库源库分为Dify默认解析和Unstructured解析,码聚后者可能涉及付费,通常Dify解析更为常用。
Cleaner:清洗解析内容,减少后续处理负担,主要基于规则进行过滤,用户可在前端进行调整。
Splitter:文件分片策略,Dify提供自动和自定义两种,影响检索效果。
Retrieval:Dify支持多种检索模式,包括关键词检索和向量数据库检索,向量库的选择对效果有很大影响。
Rerank:对检索结果进行排序,配置Top K和score阈值,但存在设计上的不足。
总结与优化建议
Dify的RAG服务提供了基础框架,但性能优化空间大。通过调整配置,特别是针对特定业务场景,可以改善检索效果。对RAG效果要求高的用户,可能需要进行定制化的二次开发和优化。ClickHouse之聚合功能源码分析
聚合分析是数据提取的基石,对于OLAP数据库,聚合分析至关重要。ClickHouse在这方面展现出了卓越的设计和优化。本篇将深入探讨ClickHouse的聚合功能,从其工作原理、流程和优化策略入手。
在ClickHouse中,一条SQL语句的处理流程为:SQL -> AST -> Query Plan -> Pipeline -> Execute。本文将重点分析从构造Query Plan阶段开始的聚合功能。
在构造Query Plan时,SQL语句被解析成一系列执行步骤,聚合操作作为其中一步,深云论坛源码紧跟在Where操作之后。执行聚合操作主要分为两个阶段:预聚合和合并。预聚合阶段可以并行执行,而合并阶段,在使用双层哈希表时也能并行。
执行聚合操作的核心函数为InterpreterSelectQuery::executeAggregation。它初始化配置,构建AggregatingStep,并将其添加到Query Plan中。
AggregatingStep在构造Pipeline时,通过调用transformPipeline函数,构建AggregatingTransform节点。这些节点对上游数据流进行预聚合,预聚合完成后再通过ExpandPipeline扩展新节点,新节点负责合并预聚合数据。因此,聚合操作分为预聚合和合并两阶段。
AggregatingTransform的预聚合和合并操作分为两个主要阶段。值得注意的是,所有AggregatingTransform节点共享名为many_data的数据。
在预聚合阶段,数据通过哈希表存储,哈希表键为“grouping key”值,键数量增加时,系统会动态切换到双层哈希表以提升性能。对于不同的键类型,ClickHouse提供多种特化版本,以针对特定类型进行优化。
预聚合阶段后,数据可能以单层哈希表形式存在,也可能转换为双层哈希表。单层转换为双层后,按照block_num进行组合,由MergingAggregatedBucketTransform节点进行合并。若预聚合数据为双层哈希表,则直接进行并行合并。最后,数据在SortingAggregatedTransform节点中根据block_num排序。
AggregatingTransform的动态扩展Pipeline功能,使得计算时根据数据动态判断后续执行的节点类型和结构,体现了ClickHouse Pipeline执行引擎的强大之处。当需要扩展节点时,AggregatingTransform构造新input_port,与扩展节点的output_port相连。
aggregator作为聚合操作的核心组件,封装了具体的聚合和合并逻辑。构造函数选择合适的哈希表类型,基于“grouping key”的数量、特性和属性,曾氏通道源码如lowCardinality、isNullable、isFixedString等。默认使用serialized类型的哈希表,键由多个“grouping key”拼接而成。
执行预聚合操作的接口executeOnBlock执行初始化、格式转换和参数拼接等步骤,然后执行聚合操作。执行操作后,根据是否需要将单层哈希表转换为双层,以及是否将数据写入磁盘文件进行判断。
本文分析了ClickHouse聚合功能的细节,展示了其强大的性能背后的系统设计和优化策略。聚合分析体现了ClickHouse作为一个软件系统,整合了常见工程优化并保持合理抽象水平,避免了代码质量下降和迭代开发带来的问题。
Underscore源码分析
JavaScript,作为最被低估的编程语言之一,自从Node.js的出现,全端开发(All Stack/Full Stack)概念日渐兴起,现今,其地位不可小觑。JavaScript实质上是一种类C语言,对于具备C语言基础的学习者,理解JavaScript代码大体上较为容易,然而,作为脚本语言,JavaScript的灵活性远超C语言,这在一定程度上给学习者带来了一定的困难。
集合是JavaScript中一种重要的概念,下面我们就来看看其中的几个迭代方法。
首先,集合中的迭代方法包括`_.each`和`_.forEach`,这两个方法在功能上基本一致,主要用于对集合进行遍历。它们接受三个参数:集合、迭代函数和执行环境。其中,`_.each`和`_.forEach`在ES6中为数组添加了原生的`forEach`方法,但后者更灵活,能够应用于所有集合。
`_.each`和`_.forEach`在遍历时会根据集合的类型(类数组或对象)调用不同的实现。如若集合有`Length`属性且为数字且在0至`MAX_ARRAY_INDEX`之间,则判定为类数组,否则视为对象集合。在遍历过程中,`_.each`和`_.forEach`会根据集合的特性使用合适的迭代方式。
在处理集合时,`_.map`和`_.reduce`方法的任务团购源码实现原理类似,`_.map`用于获取集合中元素的映射结果,而`_.reduce`则用于逐元素执行函数并逐步聚合结果。
此外,`_.find`函数与`Array.some()`具有相似性,不同之处在于`_.find`返回第一个使迭代结果为真的元素,而`Array.some()`则返回一个布尔值。`_.find`和`_.detect`函数基于`_.findIndex`和`_.findLastIndex`实现,它们分别在正序和反序的情况下查找满足条件的元素。
在处理集合时,`_.max`方法用于寻找集合中的最大值,通过循环比较集合中的所有项,最终返回最大值。`_.toArray`则负责将各种类型的集合转换为数组,确保数据的格式统一。对于数组、类数组对象、普通对象以及null或undefined的情况,`_.toArray`分别采用了不同的处理方式,确保了转换过程的灵活性与准确性。
至于集合转换为数组的问题,JavaScript中的数据类型多样,理解它们之间的区别对于开发者来说至关重要。然而,`_.toArray`函数的设计似乎更侧重于处理特定类型的数据,而不仅仅基于JavaScript的基本数据类型。在实际应用中,开发者需要根据具体场景灵活运用这些工具,以实现高效、准确的数据处理。
阮一峰推荐学习 vue3 源码的利器
本文推荐一个学习 Vue3 源码的利器,名为 mini-vue,该库由阮一峰老师在第 期周刊推荐。mini-vue 专为简化 Vue3 源码学习过程而设计,旨在帮助开发者聚焦核心逻辑,提升代码可读性。
在面对 Vue3 源码的庞大代码量时,分而治之的策略尤为关键。通过分析源码,我们可以发现许多处理边缘情况或特定环境逻辑的代码段,这些在理解核心功能时可以先略过。mini-vue 正是这样一款工具,专注于核心逻辑,去除非核心部分,使代码结构更清晰,更易于理解。
为了让用户更快速地理解库的核心逻辑,mini-vue 在代码上加入了详细的注释,提供可视化的运行流程,通过 console.log 输出关键路径节点的五游捕鱼源码运行状态,方便用户在调试时快速定位问题。这一设计极大地降低了学习难度,让开发者能够更快地掌握库的使用方法。
从个人角度而言,实现 mini-vue 不仅能帮助用户快速学习 Vue3 核心逻辑,还能通过自己动手实现功能的方式,更深入地理解代码。实现过程不仅验证了学习成果,还能通过对比源码和 mini-vue 中的实现,深化对 Vue3 的理解。
使用 mini-vue 的步骤包括下载库、查阅 README 了解已实现功能与结构、从示例 demo 开始学习,通过 console.log 输出进行代码调试,进一步深入阅读代码并理解其逻辑。掌握 mini-vue 后,再回看 Vue3 源码时,会发现其结构和逻辑更为清晰,学习过程变得更为顺畅。
为了鼓励开发者,mini-vue 提供了视频教程,方便用户获取更详细的学习指导。如需支持开发者持续完善库,欢迎在 GitHub 仓库中点星,并在 issues 部分提出宝贵意见和建议,与开发者共同推动 mini-vue 的进步。关注“花果山前端”公众号,获取更多有趣的文章和项目分享。
有哪些开源的源码网站?
开源源码网站为开发者提供了丰富的资源和交流平台。下面列举了一些知名的开源源码网站:
一、CSDN - 专业开发者社区,提供原创博客、问答、培训、论坛和资源下载服务。
二、OSCHINA - 中文开源技术交流社区,传播开源理念,推广开源项目,提供开源技术交流平台。
三、SegmentFault - 中国领先的新一代开发者社区和技术媒体,提供问答、专栏、课程和资讯。
四、v2ex - 创意工作者社区,讨论编程、设计、硬件、游戏等话题。
五、有穹 - 专注开源软件源码分享与交流的平台,发布、收藏和下载源码作品。
六、LearnKu - 终身编程者知识社区,定制编程知识。
七、掘金 - 技术文章社区,提供技术筛选和干货分享。
八、博客园 - 开发者知识分享社区,帮助开发者分享和学习。
九、Gitee - Git代码托管和协作平台,提供代码托管服务。
十、GitHub - 全球最大的开源社区,聚集众多开源项目。
这些网站为开发者提供了丰富的资源和交流机会,是学习和分享编程知识的重要平台。
怎样开始阅读scikit-learn的源码?是否值得读
值得阅读scikit-learn源码,开启方式如下: 一、明确目标 在阅读scikit-learn源码之前,你需要明确自己的目的。是想深入了解某个算法的实现细节,还是希望对整个框架有更深的理解,或者是寻找性能优化的灵感?明确目标可以帮助你更有针对性地阅读源码。 二、选择入口点 由于scikit-learn是一个庞大的库,涵盖了许多机器学习算法和工具,建议从你最熟悉的或者最感兴趣的模块开始阅读。例如,可以从分类、回归、聚类等核心模块开始,逐步深入到相关的算法实现。 三、阅读文档和注释 scikit-learn的源码文档中有很多有用的注释和说明,这些可以帮助你理解代码的逻辑和结构。在开始阅读代码之前,建议先查看官方文档和相关模块的API文档。在阅读代码时,重点关注函数的逻辑、数据结构和算法实现。 四、逐步深入 不要试图一次性理解整个库的源码,这可能会非常困难。建议逐步深入,先从核心模块开始,然后逐渐扩展到其他模块。在阅读代码的过程中,如果遇到不理解的地方,可以先做标记,继续阅读后面的内容,等理解了一些相关内容后再回头查看。 关于是否值得读scikit-learn的源码: 是的,阅读scikit-learn的源码对于深入理解机器学习和提升编程能力都非常有帮助。 1. 理解算法原理:通过阅读源码,可以深入了解各种机器学习算法的实现细节,从而更深入地理解其原理。 2. 学习编程技巧:scikit-learn的源码非常干净、简洁,且使用了很多高级的编程技巧,如优化、并行处理等。阅读源码可以学习到很多编程技巧和方法。 3. 拓展视野:了解源码可以帮助你更全面地了解机器学习的生态系统,了解哪些工具和方法是最常用的,哪些是比较新的。 总之,阅读scikit-learn的源码对于机器学习爱好者和开发者来说是非常有价值的。源码级解析,搞懂 React 动态加载(下) —— @loadable/component
源码级解析,探索 React 动态加载的实现与特性
本系列文章旨在深入探讨单页应用(SPA)技术栈,重点关注动态加载方案的实现原理。上篇中,我们已介绍了 react-loadable 和 React.lazy,其中后者几乎已覆盖所有使用场景,并在 React 版本中添加了 SSR 支持。今天,我们将聚焦于一款名为 @loadable/component 的新方案,探索其在动态加载领域的独特优势与实现机制。
根据官方说明,@loadable/component 不仅支持动态加载组件,还扩展了 prefetch、library 分割等特性,并提供简洁的 API。它允许用户在不依赖其他高阶组件的情况下,直接动态加载组件或库。
为了直观理解动态加载的实现原理,我们先从具体例子入手。通过改造开头的例子,我们展示了如何使用 @loadable/component 实现组件动态加载。
接下来,我们将深入探讨动态加载组件与库之间的区别,以及如何利用 loadable 和 loadable.lib 函数实现动态加载。通过分析源码,我们发现核心逻辑在于使用 createLoadable 工厂方法,该方法根据不同的加载方式(loadable 和 lazy)生成高阶组件 Loadable。
分析 loadable 和 lazy 的实现区别后,我们发现它们在加载模块时的流程相似,但在加载组件时有所差异。动态加载的 ref 属性转发机制也是动态加载组件与库的重要特性之一,通过分析 Loadable 组件内部的实现细节,我们揭示了 ref 属性的指向原理。
在服务端渲染场景下,@loadable/component 的动态加载机制与客户端有所不同,主要通过同步加载动态组件/库来确保渲染过程的流畅性。通过构造函数中的同步加载操作,我们实现了服务端与浏览器端的加载一致,进而保证了渲染时可以获取到动态资源。
总结对比不同动态加载方案,React.lazy + Suspense 提供了强大的异步渲染控制能力,而 react-loadable 和 @loadable/component 则通过高阶组件的形式,实现了组件与库的动态加载。在选择动态加载方案时,应根据项目需求和具体场景进行评估,考虑到不同的特性和限制。
Langchain-ChatGLM源码解读(二)-文档embedding以及构建faiss过程
Langchain-ChatGLM源码解析(二)-文档embedding及faiss构建 Langchain的核心功能包括文档问答的五个步骤,本文主要聚焦于其在文档embedding和faiss构建过程中的实现细节。源码入口与分类
langchain针对文档embedding和faiss构建有明确的两个分支处理情况:首次加载文件生成faiss.index,以及已存在索引时的处理。不存在faiss.index
在MyFAISS类中,`from_documents()`方法负责初始化。它首先对文本进行embedding,存储在`embeddings`列表(二维浮点数组)和`embedding`对象中。`embedding.embed_documents()`调用client.encode,允许自定义HuggingFace模型进行向量化。`__from()`方法则构建faiss索引,关键步骤包括选择L2距离衡量、生成唯一id编码,以及使用HuggingFace的`embed_query()`进行文本向量化。存在faiss.index
当索引已存在时,`load_local()`方法利用lru_cache进行缓存。`add_documents()`函数执行向量增量和数据增量操作,返回包含文档编码的列表。文件存储
索引、文档存储对象和映射字典分别存储在`.faiss`和`.pkl`文件中,便于后续使用和维护。总结
理解Langchain在文档embedding和faiss构建过程中的源码,关注函数定义中的变量类型,是深入学习的关键。通过逐行阅读源码,可以更好地掌握其实现逻辑和工作流程。图解大模型训练之:Megatron源码解读2,模型并行
源码解读系列将深入探讨Megatron的预训练部分代码,聚焦于模型并行策略。在上一篇文章中,我们详细介绍了如何在分布式环境中初始化模型,包括按照DP/TP/PP对进程进行分组,并为每个进程分配GPU。接下来,我们将探索如何将模型进行切分,并将其整合到分布式环境定义好的DP/TP/PP组中。
在Megatron中,通过预先设定的DP/TP/PP组,我们能够将模型进行有效的切割。这种切割方法既考虑了模型的并行性,又兼顾了内存和计算资源的优化。为了实现这一目标,我们需要在CPU上定义并初始化模型,然后将其搬运到当前进程所对应的GPU上。
模型切割的核心思想是面向进程编程,这意味着我们的脚本处理的是发生在单个进程上的任务。这样做的好处是,我们只需维护一份脚本,然后将其部署到不同机器的GPU上执行,从而实现全局并行计算。然而,每个进程处理的模型部分不同,比如在GPT模型中,预处理层涉及词嵌入计算,而后续层则涉及到softmax和损失函数的计算。为了解决模型差异性问题,我们可以通过进程ID来控制随机种子的设定,确保模型初始化的一致性。
在分布式训练中,随机种子的设定至关重要,它直接影响到模型的复现性。例如,当我们采用激活检查点技术来节省内存时,在反向传播过程中需要重新计算前向传播得到的激活值,此时就需要确保模型能够完全复现前向过程的初始化结果。通过设定不同的随机种子,我们能够确保每个模型部分在切割后仍能保持初始化的独立性和一致性。
在模型切割部分,我们有两种主要的初始化方式:先进行整体初始化再进行切割(称为“CPU上的初始化”),以及直接在GPU上进行局部初始化(称为“在GPU上的初始化”)。这两种方式的核心区别在于随机种子的设定策略。正确选择随机种子的策略,对于确保模型的复现性至关重要。
模型并行框架在Megatron中通过预定义的函数实现,例如在megatron/training.py中的pretrain函数。这个函数作为模型并行的入口,主要包含了模型架构定义、模型切割、设置优化器和学习率调整等关键步骤。在具体实现中,模型切割主要通过定义预处理层(pre_process)和后处理层(post_process)来完成,这有助于确保模型切割后首尾层和中间层的架构一致性。
在分布式模型中,如CodeGeeX,模型的切割遵循特定的策略,以确保模型在不同GPU上的并行执行。每个进程对应模型的一部分,通过AllReduce操作确保模型输出的完整性,以便下一层能够接收正确的输入。同时,每个进程负责独立计算模型的一部分,从而实现高效的并行处理。
在Megatron中,模型切割部分涉及到一系列的类定义和函数实现,包括MegatronModule、Embedding、VocabParallelEmbedding、ParallelSelfAttention等。这些类和函数在模型切割、并行层和交叉熵计算等方面发挥着关键作用。例如,MegatronModule类确保了模型的输入和输出层共用词嵌入,以满足特定的并行要求。同时,模型中的注意力层(如ParallelSelfAttention)通过“列切割”和“行切割”策略实现高效的并行计算。
模型的最后一层,即交叉熵的计算,同样通过类定义实现。在Megatron中,交叉熵计算通过平行化处理来优化内存使用和加速计算。通过将计算逻辑进行精简和优化,Megatron能够实现高效的并行交叉熵计算,以满足大规模模型训练的需求。
总之,Megatron的模型并行策略通过一系列的代码实现,旨在优化大规模模型的训练过程,提高计算效率和资源利用。通过合理地切割模型、设置随机种子、实现并行层和交叉熵计算,Megatron能够在分布式环境中实现高效、稳定的模型训练。
2025-01-01 13:43374人浏览
2025-01-01 13:011398人浏览
2025-01-01 11:482351人浏览
2025-01-01 11:43318人浏览
2025-01-01 11:262173人浏览
2025-01-01 11:201661人浏览
中国消费者报成都讯记者刘铭)2022年第三季度,四川省成都市市场监管部门继续强化广告监管工作,针对重点媒介、重点领域,有的放矢,加大打击力度,全力维护消费者合法权益,保护人民群众生命、财产安全。日前,
1.文件扩展名是什么?2.C语言中的俄罗斯方块3.中国当年的winXP盗版系统是谁做出来的? - 知乎4.Hadoop 的 Lists.newArrayList和正常的 new ArrayList()
1.蓝牙RFCOMM协议实现2.Androidå¼åä¹èçï¼Bluetoothï¼3.android蓝牙通讯Socket.connect()方法调用不成功。为什么?4.Andr