1.离线强化学习(Offline RL)系列3: (算法篇) REM(Random Ensemble Mixture)算法详解与实现
2.ptans是什么意思?
3.强化学习入门DQN算法详解
离线强化学习(Offline RL)系列3: (算法篇) REM(Random Ensemble Mixture)算法详解与实现
更新记录
论文信息:Rishabh Agarwal, Dale Schuurmans, Mohammad Norouzi: “An Optimistic Perspective on Offline Reinforcement Learning”, , Proceedings of the th International Conference on Machine Learning, PMLR :-, ; arXiv:..
本文介绍Google Brain团队与Alberta大学合作在年提出的一种基于DQN replay dataset的鲁棒离线强化学习解决方法,该方法发表于ICML顶会上,使用个离线强化学习dataset,规模相当于ImageNet的倍,方法名为“An Optimistic Perspective”。
摘要:本文探讨在不修正分布偏移的st库3.5.0源码情况下,随机集成混合方法(REM)能否达到最优效果。通过多个参数化函数估计值,并将多个估计值的凸组合看作是值估计本身,强制执行最佳的贝尔曼一致性,实验结果表明效果不错。
问题及数据集:离线强化学习(Offline RL)与off-policy学习相比,面临分布偏移、OOD、不稳定、探索不足等问题。windows禅道源码作者制作了一个全Atari数据集,包含万帧经验元组,用于后续实验。
论文方法:基础方法总结包括Ensemble-DQN、Distributional RL、QR-DQN等。随机集成混合方法(REM)是一种扩展,通过访问多个值估计并加权组合得到值估计,实现训练步骤中的随机组合。理论证明和衡量指标也在此过程中讨论。
影响Offline RL的因素:数据集大小、多样性、算法选择。实验结果显示,随着数据比例的delphi 权限管理 源码增加,性能增加;离线REM和QR-DQN在不同游戏中的表现与在线DQN相当;算法选择上,离线TD3性能优于离线DDPG和收集离线数据的行为策略。
实验结果分析:离线DQN在所有游戏上的表现不如在线DQN;离线QR-DQN在大多数游戏上优于离线DQN和在线DQN;离线C在离线DQN上也表现出改进。结果分析包括离线DQN、离线QR-DQN、离线C的比较。
实验源代码:Github: An Optimistic Perspective on Offline Reinforcement Learning
参考文献:[1]. Rishabh Agarwal, Dale Schuurmans, Mohammad Norouzi: “An Optimistic Perspective on Offline Reinforcement Learning”, , Proceedings of the th International Conference on Machine Learning, PMLR :-, ; arXiv:..
OfflineRL推荐阅读:离线强化学习系列文章,分别介绍了策略约束下的BRAC、BEAR、BCQ算法原理、D4RL数据集简介及错误解决、离线强化学习原理入门。
ptans是什么意思?
Ptans是一种强大的Python平台,它可以为我们提供快速的机器学习和深度学习算法实现。Ptans使用Pytorch框架,eclipse中加入源码提供了一个直观的API和模块化工具,使开发人员可以轻松构建深度学习模型。此外,它还支持多个GPU并行处理,可以处理大型数据集并运行高效的训练和推理任务。总的来说,Ptans是一个非常便捷的平台,使得Python程序员可以快速进入深度学习领域。
Ptans平台是一个开放源代码的Python软件包,其主要目标是为深度学习提供各种高效的工具和资源。Ptans提供了多种深度强化学习算法,包括深度Q网络(DQN)、自适应线性神经网络(ALNN)和策略梯度算法(PG)。Ptans还提供了一种可扩展的环境配置,使开发人员能够很容易地创建和测试不同的股票选股源码环境,而不必担心复杂的代码和数据处理任务。此外,Ptans还提供了一些反馈机制来优化神经网络的训练过程,使得学习更加快速和自动化。
Ptans广泛应用于深度学习领域。例如,在比赛中,Ptans已经帮助很多团队赢得了深度Q网络挑战。而在高校教学中,Ptans也被用于教授深度学习相关的课程,为学生提供了直观易懂且卓越的实践经验。另一个重要的领域是强化学习,Ptans被广泛应用于各种游戏和动态环境中。最近,Ptans已经成为很多研究团队首选的平台,因为其优异的性能和易用性,促进了深度学习领域的进步。
强化学习入门DQN算法详解
深度强化学习之旅:DQN算法解析 强化学习,一个智能体通过不断与环境互动,学习最佳策略的理论框架,在年被DeepMind以DQN算法推向新的高度。这项突破性工作在NIPS和Nature上发表,不仅提升了AI在自动驾驶和信号灯控制等领域的应用,而且开启了深度学习在复杂环境中的决策优化新篇章。 传统强化学习算法,如Q-Learning(年提出),通过Q矩阵存储状态-动作值,适合规模较小的问题,但当面临庞大的状态和动作空间时,处理能力就显得捉襟见肘。DQN的出现,正是为了解决这一难题,它将Q-Learning与神经网络(Q-Network)结合,利用深度学习的强大表征能力,通过学习和优化神经网络来预测未来奖励。 神经网络训练的核心是,通过未来的奖励预测来计算标签,损失函数聚焦于估算动作的价值。DQN的流程包括:初始化经验缓存和Q函数,然后在每个episode中,智能体在环境中采样、学习并根据新数据更新网络。探索策略至关重要,通常使用e-greedy方法,随着时间推移逐渐降低随机动作的选择概率,确保策略的稳健性和效率提升。 DQN中引入了目标网络,与主网络结构相同,以稳定训练并减少噪声。在ElegantRL的代码实现中,探索环境生成训练数据,然后通过Replay Buffer进行反向传播更新网络。举个例子,explore_env函数负责环境互动,收集状态、动作、奖励和终止信号,而get_action函数则根据探索策略随机选取动作。 探索率的调整,如通过buffer数据计算损失并优化网络,get_obj_critic负责获取损失,Q值由即时奖励和折扣后的next_q值计算得出。而QNet类则是神经网络模型的核心,它接收环境状态,为每个可能的动作计算出对应的Q值。 实战应用:DQN在CartPole环境中的表现 DQN在经典的CartPole任务中展现了卓越的性能,它能够稳定地保持杆子平衡,揭示了其在复杂环境中的决策能力。尽管如此,DQN的潜力还远未完全挖掘,它在更广泛的领域中仍等待着新的挑战和突破。 如果你对DQN算法有任何疑问或发现潜在改进点,欢迎提出交流,共同推进AI技术的进步。源代码和相关论文可以参考:NIPS 论文 | Nature 论文 | ElegantRL项目
如果你对人工智能、自动驾驶、交通控制等领域的前沿动态感兴趣,别忘了关注我们的公众号Deep Traffic,我们定期分享深度内容,共同探索智能交通的未来。重庆:快速检测查出不合格成品油16万余升
信息发布平台源码_信息发布平台源码是什么
浙江首个非遗保护传承省级标准化试点项目通过验收
lol钻石网吧源码_lol钻石网吧源码是什么
广东荣获第二届全国市场监管系统执法办案电子数据取证大比武团体第一名
自动赚钱系统源码_全自动赚钱系统源码