【通达信威科夫指标公式源码】【精准获客源码】【海风教育源码投资】proto源码
1.Protobuf入门:在linux下编译使用protobuf
2.èè JS ä¸ç Object.create
3.Lua5.4 源码剖析——虚拟机2 之 闭包与UpValue
4.linux ping命令中的struct proto
5.opensips2.4源码分析udp协议处理
Protobuf入门:在linux下编译使用protobuf
Google Protocol Buffer(简称Protobuf)是一种由Google公司内部开发的数据标准,用于数据序列化。广泛应用于数据存储和远程过程调用(RPC)系统。它具备语言无关性、平台无关性和可扩展性,支持C++、通达信威科夫指标公式源码Java和Python等语言。
编译源码包:从GitHub下载Protobuf的源代码,以2.5.0版本为例。解压后,执行配置编译命令,创建文件。编译后,文件夹中将包含bin、include和lib目录。
测试工程:将include目录下的文件按目录结构和lib/libprotobuf.a复制到测试目录。定义结构化数据Content,包含id(int)、str(string)和opt(可选成员)。使用protoc程序将Mymessage.proto文件编译成目标语言,生成Mymessage.pb.h和Mymessage.pb.cc文件。
将编译后的Mymessage.pb.o文件与Writer.cpp文件一起编译,生成log文件。精准获客源码Reader从log文件读取,反序列化后获得结构化数据。
Protobuf的优点在于高效、紧凑的二进制数据序列化方式,使其适合数据存储和RPC通信。然而,它缺乏复杂概念表示的能力,与XML相比在通用性上仍有不足。XML自解释性使其在文本描述方面优于Protobuf。
高级应用包括嵌套消息、Import Message和动态编译。嵌套消息如Person包含PhoneNumber,用于Person中的phone域。Import Message允许在包中定义公用消息,通过包引入使用。动态编译允许在运行时处理未知的.proto文件。
编写新编译器:利用Google Protocol Buffer源代码中的protoc编译器,可以开发支持其他语言的编译器。通过实现CodeGenerator派生类,实现代码生成功能。
Protobuf的编码方式使用Varint表示数字,节省空间。海风教育源码投资Varint用一个或多个字节表示数字,值越小字节越少。消息序列化为紧凑的二进制数据流,无需分隔符,可优化大小。
èè JS ä¸ç Object.create
å®è¯è¯´ï¼ä¹åä¸ç¥éè¿æè¿ä¹ä¸ªç©æãå¶ç¶é´çæå new æºç ï¼æç®åå®ç¬¬ä¸æ¬¡è®¤è¯ãObject.create() å®æ¹è§£éï¼æ¹æ³å建ä¸ä¸ªæ°å¯¹è±¡ï¼ä½¿ç¨ç°æç对象æ¥æä¾æ°å建ç对象çprotoã
å ¶å® Object.create() æ两个åæ°ï¼ Object.create(proto, [propertiesObject])
proto : å¿ é¡»ï¼è¡¨ç¤ºæ°å»ºå¯¹è±¡çåå对象ã
å³è¯¥åæ°ä¼è¢«èµå¼å°ç®æ 对象(å³æ°å¯¹è±¡ï¼æ说æ¯æåè¿åç对象)çååä¸ã
该åæ°å¯ä»¥æ¯nullï¼ å¯¹è±¡ï¼ å½æ°ç prototype å±æ§
注æï¼å建空ç对象æ¶éä¼ null , å¦åä¼æåº TypeError å¼å¸¸
propertiesObject : å¯éï¼æ·»å å°æ°å建对象çå¯æ举å±æ§ã
( å³å ¶èªèº«çå±æ§ï¼èä¸æ¯ååé¾ä¸çæ举å±æ§ ) 对象çå±æ§æ述符以åç¸åºçå±æ§å称ã
è¿äºå±æ§å¯¹åº Object.defineProperties() ç第äºä¸ªåæ°ã
ä¸ æ®éæ¹å¼ å建对象 ä¸åç¹
Lua5.4 源码剖析——虚拟机2 之 闭包与UpValue
故事将由我们拥有了一段 Lua 代码开始,我们先用 Lua 语言写一段简单的打印一加一计算结果的 Lua 代码,并把代码保存在 luatest.lua 文件中:
可执行的一个 Lua 文件或者一份单独的文本形式 Lua 代码,在 Lua 源码中叫做 "Chunk"。无论我们通过什么形式去执行,或者用什么编辑器去执行,最终为了先载入这段 Lua 的 Chunk 到内存中,无外乎会归结到以下两种方式:1)Lua 文件的载入:require 函数 或 loadfile 函数;2)Lua 文本代码块的载入:load 函数;这两种方式最终都会来到下面源码《lparse.c》luaY_parser 函数。该函数是解析器的入口函数,负责完成代码解析工作,最终会创建并返回一个 Lua 闭包(LClosure),见下图的红框部分:
另外,上图中间有一行代码最终会调用到 statement 函数,statement 函数是 Chunk 解析的核心函数,它会一个一个字符地处理我们编写的 Lua 代码,完成词法分析和语法分析工作,想要了解字符处理整个状态流程的python中int源码可以自行研读该部分源码,见源码《lparse.c》statement 函数部分代码:
完成了解析工作之后,luaY_parser 函数会把解析的所有成果放到 Lua 闭包(LClosure)对象之中,这些存储的内容能保证后续执行器能正常执行 Lua 闭包对应的代码。
Lua 闭包由 Proto(也叫函数原型)与 UpValue(也叫上值)构成,见源码《lobject.h》LClosure 定义,我们下面将进行详细的讲解:
UpValue 是 Lua 闭包数据相关的,在 Lua 的函数调用中,根据数据的作用范围可以把数据分为两种类型:1)内部数据:函数内部自己定义的数据,或者通过函数参数的形式传入的数据(在 Lua 中通过参数传入的数据本质上也是先赋值给一个局部变量);2)外部数据:在函数的更外层进行定义,脱离了该函数后仍然有效的数据;外部数据在我们的 Lua 闭包中就是 UpValue,也叫上值。
既然 Lua 支持函数嵌套,也知道了 UpValue 本质就是上层函数的内部数据。那么 UpValue 有必要存储于 Lua 闭包(LClosure)结构体当中吗?是为了性能考虑而做的一层指针引用缓存吗?回答:并不是基于性能的考虑,因为在实际的 Lua 运用场景中,函数嵌套的层数通常来说不会太多,个别函数多一层的查询访问判断不会带来过多的性能开销。需要在闭包当中存储 UpValue 主要原因是因为内存。Lua 作为一门精致小巧的脚本语言,设计初衷不希望占用过多的系统内存,它会尽量及时地清理内存中用不到的对象。在嵌套函数中,站长免费源码网内层函数如果仍然有被引用处于有效状态,而外层函数已经没有被引用了已经无效了,此时 Lua 支持在保留内层函数的情况下,对外层函数进行清除,从而可以清理掉外层函数引用的非当前函数 UpValue 用途以外的大量数据内存。
尽管外层函数被清除了,Lua 仍然可以保持内层函数用到的 UpValue 值的有效性。UpValue 如何能继续保持有效,我们在之前的基础教程《基本数据类型 之 Function》里面学习过,主要是因为 UpValue 有 open 与 close 两种状态,当外层函数被清除的时候,UpValue 会有一个由 open 状态切换到 close 状态的过程,会对数据进行一定的处理,感兴趣的同学可以回到前面复习一下。
UpValue 有效性例子
接下来我们举一个代码例子与一个图例,表现一下 UpValue 在退出外层函数后仍然生效的情况,看一下可以做什么样的功能需求,加深一下印象,请看代码与注释:
上述代码在执行 OutFunc 函数后,外层的 globalFunc 函数变量完成了赋值,每次对它进行调用,都将可以对它引用的 UpValue 值即 outUpValue 变量进行正常加 1。
函数的内部数据属于函数自身的内容,外部其它函数无法通过直接的方式访问其它函数的内部数据。函数自身的东西会存在于 LClosure 结构体的 Proto*p 字段中。Proto 全称 "Function Prototypes",通常也可以叫做 "函数原型",我们来看一下它的定义,见源码《lobject.h》Proto 结构体:
结构体字段比较多,我们先不细看,后面用到哪个字段会再进行补充说明。函数的内部数据分为常量与变量(即函数局部变量),分别对应上图的如下字段:
1)常量:TValue* k 为指针指向常量数组;int sizek 为函数内部定义的常量个数,也即常量数组 k 的元素个数。
2)局部变量:LocVar* locvars 为指针指向局部变量数组;int sizelocvars 为函数定义的局部变量个数,也即局部变量数组 locvars 的元素个数。
UpValue 的描述信息会存储在 Proto 结构体中的 Upvaldesc* upvalues 字段,解析器解析 Lua 代码的时候会生成这个 UpValue 描述信息,并用于生成指令,而执行器运行的时候可以通过该描述信息方便快速地构建出真正的 UpValue 数组。
至此,我们知道了函数拥有 UpValue,有常量,有局部变量。外部数据 UpValue 也讲完,内部数据也讲完。接下来,我们开始学习函数运行的逻辑指令相关内容。
函数逻辑指令存储于函数原型 Proto 结构体中,这些函数逻辑是由一行行的 Lua 代码构成的,代码会被解析器翻译成 Lua 虚拟机能识别的指令,我们把这些指令称为 "OpCode",也叫 "操作码"。Proto 结构体存储 OpCode 使用的是下图中红框部分字段,见源码《lobject.h》Proto 结构体:
至此,我们可以简单提前说一下 Lua 虚拟机的功能了,本质上来看,Lua 虚拟机的工作,就是为当前函数(或者当前一段 OpCode 数组)准备好数据,然后有序执行 OpCode 指令。
对 OpCode 有了一定的认识了,接下来我们要补充一个 OpCode 相关的 Lua 闭包相关的内容,就是 Lua 闭包的运行环境。
一个 Lua 文件在载入的时候会先创建出一个最顶层(Top level)的 Lua 闭包,该闭包默认带有一个 UpValue,这个 UpValue 的变量名为 "_ENV",它指向 Lua 虚拟机的全局变量表,即_G 表,可以理解为_G 表即为当前 Lua 文件中代码的运行环境 (env)。事实上,每一个 Lua 闭包它们第一个 UpValue 值都是_ENV。
ENV 的定义在我们之前提到的解析器相关函数 mainfunc 中,见源码《lparser.c》:
如果想要设置这个载入后的初始运行环境不使用默认的 _G 表,除了直接在该文件代码中重新赋值_ENV 变量这种粗暴且不推荐的方式以外,通常是通过我们前面提到的加载 Lua 文件函数或加载 Lua 字符串代码函数传入 env 参数(Table 类型),就可以用自定义的 Table 作为当前 Lua 闭包的全局变量环境了,env 参数为上面两个函数的最末尾一个参数,'[' 与 ']' 字符中的内容表示参数可选,函数的定义摘自 Lua5.4 官网文档:
所以我们可以在 Lua 代码通过 _ENV 访问当前环境:
在 Lua 的旧版本中,变量的查询最多会分为 3 步:1)先从函数局部变量中进行查找;2)找不到的话就从 UpValue 中查找;3)还找不到就从全局环境默认 _G 表查找。而在 Lua5.4 中,把 UpValue 与全局 _G 表的查询统一为 UpValue 查询,并把一些操作判断提前到了解析器解析阶段进行,例如函数内部使用的某个 UpVaue 变量在代码解析的时候就可以通过 UpValue 描述信息知道存储于 Lua 闭包 upvals 数组的哪个下标位置,在执行器运行的时候只需要直接在数组拿取对应下标的这个 UpValue 数据即可。
从 OpCode 的层面来看,Lua 除了支持通过一个 UpValue 数组下标访问一个 UpValue 变量,在把 _G 表合并到 UpValue 之后,Lua 为此实现了通过一个字符串 key 值从某个 Table 类型的 UpValue 中查询变量的操作。
至此,我们了解了 Lua 闭包的结构与运行环境,以及 OpCode 的基本概念。接下来,我们将深入学习 OpCode,掌握 OpCode 就掌握了整个 Lua 虚拟机数据与逻辑的流向。
linux ping命令中的struct proto
fproc是函数指针,指向函数的入口地址。
标准写法是proto_v4.fproc = &proc_v4;
可以简写为proto_v4.fproc = proc_v4;
编译器都认识。
用函数指针通常可以封装某些内部信息,参数可以通过消息传递。
可能的一种调用形式为:
void process(struct proto *p,u msg[4])
{
char *s = (char*)msg[0];
ssize_t *sz = (ssize_t*)msg[1];
struct timeval *tv = (struct timeval*)msg[2];
p->fproc(s,*sz,tv);
}
结构体初始化用=有什么问题吗?
opensips2.4源码分析udp协议处理
在opensips 2.4的源码中,udp协议处理是通过内置的静态模块proto_udp实现的。这个模块主要集中在proto_udp.c文件中,通过结构体module_exports的cmds和params来配置,其中"udp_port"是唯一的可配置参数,默认值为。
关键的函数proto_udp_init负责初始化协议处理结构体struct proto_info,它负责设置udp的监听、发送和接收功能,这些底层操作在proto_udp.c文件中具体实现。在opensips主程序启动时,通过trans_load函数加载所有通信协议,其中会查找并调用proto_init函数,如proto_udp的proto_init函数,用于初始化proto_info结构。
udp的监听逻辑根据配置文件进行,配置中的listen指令决定监听的端口。opensips使用struct socket_id结构体来抽象监听,这个结构在cfg.y的flex语法文件中生成,并在trans.c的add_listener函数中添加到全局的protos数组。在主程序启动的最后阶段,会调用udp_proto模块的tran.init_listener函数来启动监听,但实际监听端口可能根据配置有所调整,如果没有相应的配置,该协议将被禁用。