欢迎来到皮皮网官网

【友点cms源码】【弱事件模式 源码】【怎么学html源码】libevent组织源码_libevent源码分析

时间:2025-01-17 08:34:36 来源:安卓electrum源码

1.libevent、组织libev框架介绍
2.网络I/O库总结(libevent,源码源码libuv,libev,libeio)
3.Envoy源码分析之Dispatcher
4.scribe安装与使用

libevent组织源码_libevent源码分析

libevent、libev框架介绍

       本文深入讲解了libevent的分析API,并剖析了libevent的组织evbuffer源码。libevent、源码源码libev和libuv都是分析友点cms源码C语言实现的异步事件库,主要负责注册异步事件、组织检测异步事件,源码源码并根据事件的分析触发先后顺序调用相应的回调函数处理事件。这些事件包括网络I/O事件、组织定时事件以及信号事件,源码源码共同驱动服务器运行。分析

       libevent和libev主要封装了与操作系统交互的组织简单事件管理接口,让开发者无需关注平台差异,源码源码只需处理事件的分析具体逻辑。libev改进了libevent的架构决策,如消除全局变量的使用,采用回调函数传递上下文,构建不同的数据结构以降低事件耦合性,使用最小四叉堆作为计时器,从而实现高效管理。然而,libevent和libev在window平台的支持较差,因此libuv应运而生,基于libev,尤其在window平台上更好地封装了iocp,弱事件模式 源码node.js即基于libuv。

       在libevent的编译安装过程中,首先从git下载release-2.1.-stable.tar.gz,然后在编译程序时指定库名:-levent。由于头文件和库文件已经复制至系统路径,因此在编译时无需额外指定-I和-L。

       libevent的封装层次分为网络封装和解决的问题。网络封装包括IO检测和IO操作,解决的问题涉及连接建立(如最大连接数、黑白名单等)和连接断开,以及数据的到达与发送。如果不想手动操作IO事件,libevent会管理读写I/O处理,使开发者只需处理逻辑,无需关心边界问题。

       libevent提供了事件检测与操作的封装。事件检测是低层封装,由libevent负责,用户自定义IO操作。该层次封装了事件管理器操作和事件接口。事件管理器event_base用于构建事件集合,检测事件就绪情况。释放管理器使用event_base_free,event_reinit用于重置,event_get_supported_methods查看支持的怎么学html源码方法。

       事件循环通过event_base_dispatch和event_base_loop实现,等待事件产生,提供类似epoll红黑树循环的功能。事件循环终止使用event_base_loopbreak和event_base_loopexit,前者在事件回调执行后终止,后者立即终止。

       事件对象通过event_new创建,event_free销毁。注册与注销事件使用event_add和event_del,事件驱动的核心思想是libevent的核心功能。

       libevent事件对象包括只使用事件检测、IO操作自处理的Demo。此外,自带缓冲的事件-bufferevent介绍其作为event的高级版本,拥有两个缓冲区和三个回调函数,分别用于读取、写入和事件处理。

       bufferevent提供读写数据到缓冲区的封装,三个回调函数分别处理读取、写入和事件触发。构建、销毁bufferevent对象,以及连接操作、设置回调等。

       事件类型注册与注销使用bufferevent_enable/disable,镇府网站源码获取读写缓冲区使用bufferevent_get_input和bufferevent_get_output,数据分割使用evbuffer_readln和固定长度读取使用evbuffer_remove。

       对于bufferevent,一个文件描述符对应两个缓冲区和三个回调函数,文件描述符用于与客户端通信,非监听文件描述符。两个缓冲区指读缓冲区和写缓冲区,三个回调分别对应读操作、写操作和事件触发。

       链接监听器-evconnlistener封装底层socket通信函数,如socket、bind、listen、accept。创建监听器后,等待新客户端连接,调用用户指定的回调函数。构建监听器使用evconnlistener_new_bind,回调函数evconnlistener_cb接收与客户端通信的描述符和连接对端地址。

       信号事件在libevent中与网络事件相似,通过epoll监听。定时事件和网络事件的处理机制基于最小堆与epoll_wait,通过源码分析可深入了解流程。

       evbuffer作为libevent底层实现的链式缓冲区,用于bufferevent事件中的ef core 源码解析数据读写。每个evbuffer由链表组成,包含关键成员和实现细节。evbuffer的优点在于高效处理数据移动和内存浪费,缺点是数据在不连续内存中存储,可能导致多次io。libev关注具体网络IO事件、定时事件和信号事件,提供API如ev_io_init、ev_io_start、ev_timer_start和ev_run。通过libev宏定义封装,开发者能使用与libevent类似的接口。

网络I/O库总结(libevent,libuv,libev,libeio)

       Libevent

       Libevent 是一个基于事件驱动模型的非阻塞网络库,用于构建高速、可移植的非阻塞 IO 应用。广泛应用于 memcached、Vomit、Nylon、Netchat 等项目中,作为底层网络库,用于实现 TCP 或 HTTP 服务。Libevent 的 GitHub 源码可访问。

       Libev

       Libev 是由 Marc Lehmann 独立完成的,对不同系统非阻塞模型进行简单封装,解决了不同 API 之间的不兼容问题,保证程序在大多数 *nix 平台上运行。Libev 支持类 UNIX 系统的多种 I/O 多路复用模型,如 select、poll、epoll、kqueue、evports 等,但对于 Windows 的支持仅限于 select 模型,效率较低,性能不如 Libuv 封装的 IOCP。Libev 目标是修复 Libevent 的一些设计问题,如避免使用全局变量,提供更高效的事件类型管理。

       Libuv

       Libuv 是一个跨平台、高性能、事件驱动的异步 IO 库,用 C 语言编写,封装了不同平台底层的高性能 IO 模型,如 epoll、kqueue、IOCP、event ports,具有高度可移植性。Libuv 为 Node.js 设计,但因其高效模型逐渐被其他语言和项目采纳,用于底层库,如 Luvit、Julia、uvloop、pyuv 等。

       Libevent、Libev、Libuv 比较

       根据 GitHub 星标数,Libuv 的影响力最大,其次是 Libevent,Libev 关注较少。在优先级、事件循环、线程安全等方面,Libuv 更为现代,支持多种平台和 IO 模型,提供了更优的性能和功能。Libevent 和 Libev 分别针对不同平台和需求进行优化,Libev 旨在修复 Libevent 的问题。性能和可移植性方面,Libuv 优于 Libevent 和 Libev。

       异步 IO 实现

       目前 Linux 异步 IO 实现有原生异步 IO 和多线程模拟异步 IO 两种方式。原生异步 IO 支持特定场景,但不充分利用 Page cache;多线程模拟异步 IO 方式如 Glibc AIO、libeio、io_uring 等,提供更广泛的适用场景。

Envoy源码分析之Dispatcher

       Dispatcher在Envoy中扮演着核心角色,是EventLoop的实现,负责任务队列、网络事件处理、定时器与信号处理等关键功能。其设计与Libevent库紧密集成,并通过封装与抽象,简化了内存管理。Dispatcher通过EventLoop提供了非阻塞的事件循环机制,支持多种事件类型,如FileEvent、SignalEvent、Timer等,通过继承unique_ptr来管理Libevent的C结构,利用RAII机制自动处理内存。SignalEvent通过初始化与添加事件使事件处于未决状态。Timer事件通过初始化与添加到Dispatcher中实现超时触发机制,确保在超时时执行。Envoy通过封装Libevent的事件类型,实现事件的抽象与统一处理。FileEvent封装了socket套接字相关的事件,支持主动触发与事件类型的设置。Dispatcher内部的任务队列用于调度与处理回调任务,通过post方法投递任务至队列,并通过循环运行这些任务。Envoy还引入了DeferredDeletable接口,允许对象在特定时间点被安全地析构,避免回调时对象已析构导致的野指针问题,同时确保析构操作在Dispatcher生命周期内完成,避免内存泄漏与程序崩溃。通过实现延迟析构机制,Envoy能够在回调执行前确保对象已正确析构,保障了程序的稳定性和安全性。这一设计与任务队列的实现类似,但在对象析构逻辑上有所不同,更专注于解决多线程环境下对象生命周期管理的复杂性。

scribe安装与使用

       Scribe的安装与使用指南

       要安装Thrift依赖,首先确保已安装以下软件:g++, boost, autoconf, libevent, Apache ant, JDK, PHP, 和python。其他脚本语言根据需要自行安装。

       安装Thrift的步骤如下:

       参照扩展阅读~中的说明进行安装流程。

       在thrift源代码目录下的tutorial目录中,使用`thrift -r –gen cpp tutorial.thrift`命令生成服务代码,包括对include文件的处理。

       生成的代码会存放在gen-cpp目录下,接着切换到tutorial/cpp目录,执行`make`生成CppServer与CppClient。

       运行这两个程序,确保它们能成功通信。

       如果Hadoop自带的libhdfs不可用,可以按照以下步骤编译:在Hadoop根目录下输入`ant compile-c++-libhdfs -Dislibhdfs=true`,并配置HADOOP_HOME的CLASSPATH。

       安装Scribe的步骤包括运行bootstrap脚本(参见扩展阅读)。可能遇到的错误及解决方法如下:

       当Boost不在默认目录时,配置命令如下:`./configure –with-boost=/usr/local/boost –prefix=/usr/local/scribe`。

       如果运行examples时出现`ImportError: No module named scribe`,可能需要添加Python路径,如:`$export PYTHONPATH="/usr/lib/python2.6/site-packages/"`。

       遇到`java.lang.NoClassDefFoundError: org/apache/hadoop/conf/Configuration`异常,需将Hadoop的classpath添加到环境变量中,如:`$export CLASSPATH=$HADOOP_HOME/hadoop-core-0..2+.jar[2]`。

       安装完成后,可以参考扩展阅读8中的方法验证安装是否成功。

copyright © 2016 powered by 皮皮网   sitemap