皮皮网

【dede源码db】【真伪查询源码】【netty的源码】clickhouse源码部署

来源:jdk源码文件 时间:2025-01-17 09:28:05

1.ClickHouse简单了解
2.通过深挖Clickhouse源码,源码我精通了数据去重!部署
3.ClickHouse 源码解析: MergeTree Merge 算法
4.339期SpringBoot + Mybatis-plus + ClickHouse 增删改查入门教程
5.Clickhouse安装部署
6.大数据ClickHouse(二):多种安装方式

clickhouse源码部署

ClickHouse简单了解

       ClickHouse是源码一款源自俄罗斯的列式存储数据库,运行在端口上。部署

       它主要用于分析性查询,源码查找、部署dede源码db更新和删除操作较为不便。源码其源码采用C++编写,部署单个查询可能占用所有CPU资源。源码

       ClickHouse的部署缺点包括CPU消耗大,在高qps下可能无法承受。源码它建议避免join操作,部署因为关联查询较慢。源码此外,部署空值(Nullable)可能会对性能产生负面影响,源码因此在设计数据库时应避免使用无业务意义的值来表示null。

       ClickHouse提供多种表引擎,包括TinyLog、Memory和MergeTree。其中,MergeTree是最强大的表引擎,支持索引(稀疏索引)和分区(与Hive类似)。

       主键没有唯一约束,且数据文件与标记文件(data.bin + data.mrk3)共同作用,加速查询。此外,还包括count.txt(行数)、columns.txt(列名信息)、checksums.txt(校验信息)、primary.idx(主键索引)、partition.dat(分区索引文件)和minmax_Create_time.idx(分区内的索引文件)等文件。

       稀疏索引默认间隔为,不建议修改。新插入数据后需要合并分区,真伪查询源码且order by是必选项,用于分区内排序。如果不设置主键,则许多操作将通过order by字段进行处理,且要求主键必须是order by的前缀字段。

       二级索引用于数据量大且重复多的场景,其粒度决定了跳过多少个一级索引,从而加快寻找速度。TTL不能应用于主键,而ReplacingMergeTree引入了去重功能,SummingMergeTree则是预聚合引擎。

       ClickHouse不推荐使用update和delete,这些操作通常由管理员完成。通过alter table可以产生临时分区目录,删除操作通过标记字段_sign(1表示已删除)进行。由于数据会膨胀,清除过期数据通常使用JDBC直接查询结果再在前端展示。

       副本只支持MergeTree家族,写入流程通过client写入数据到节点a,并通过提交日志到zookeeper同步到b。节点平等,没有主从之分。

       物化视图(MATERIALIZED)将查询结果保存在磁盘或内存中,加速查询。其缺点包括对历史数据去重效果不佳以及资源消耗较大。

       ClickHouse适用于大量数据的分析统计报表,其并发性能几乎全方位碾压Elastic Search。写入性能高得益于LSM tree数据结构和顺序写入方式,读取性能高则归功于列存储方式。

通过深挖Clickhouse源码,我精通了数据去重!

       数据去重的Clickhouse探索

       在大数据面试中,数据去重是netty的源码一个常考问题。虽然很多博主已经分享过相关知识,但本文将带您深入理解Hive引擎和Clickhouse在去重上的差异,尤其是后者如何通过MergeTree和高效的数据结构优化去重性能。

       Hive去重

       Hive中,distinct可能导致数据倾斜,而group by则通过分布式处理提高效率。面试时,理解MapReduce的数据分区分组是关键。然而,对于大规模数据,Hive的处理速度往往无法满足需求。

       Clickhouse的登场

       面对这个问题,Clickhouse凭借其列存储和MergeTree引擎崭露头角。MergeTree的高效体现在它的数据分区和稀疏索引,以及动态生成和合并分区的能力。

       Clickhouse:Yandex开源的实时分析数据库,每秒处理亿级数据

       MergeTree存储结构:基于列存储,通过合并树实现高效去重

       数据分区和稀疏索引

       Clickhouse的分区策略和数据组织使得去重更为快速。稀疏索引通过标记大量数据区间,极大地减少了查询范围,提高性能。

       优化后的去重速度

       测试显示,Clickhouse在去重任务上表现出惊人速度,特别是通过Bitmap机制,去重性能进一步提升。

       源码解析与原则

       深入了解Clickhouse的底层原理,如Bitmap机制,对于优化去重至关重要,这体现了对业务实现性能影响的深度理解。

       总结与启示

       对于数据去重,无论面试还是日常工作中,深入探究和实践是提升的关键。不断积累和学习,房cms源码即使是初入职场者也能在大数据领域找到自己的位置。

ClickHouse 源码解析: MergeTree Merge 算法

       ClickHouse MergeTree 「Merge 算法」 是对 MergeTree 表引擎进行数据整理的一种算法,也是 MergeTree 引擎得以高效运行的重要组成部分。

       理解 Merge 算法,首先回顾 MergeTree 相关背景知识。ClickHouse 在写入时,将一次写入的数据存放至一个物理磁盘目录,产生一个 Part。然而,随着插入次数增多,查询时数据分布不均,形成问题。一种常见想法是合并小 Part,类似 LSM-tree 思想,形成大 Part。

       面临合并策略的选择,"数据插入后立即合并"策略会迅速导致写入成本失控。因此,需要在写入放大与 Part 数量间寻求平衡。ClickHouse 的 Merge 算法便是实现这一平衡的解决方案。

       算法通过参数 base 控制参与合并的 Part 数量,形成树形结构。随着合并进行,形成不同层,总层数为 MergeTree 的深度。当树处于均衡状态时,深度与 log(N) 成比例。base 参数用于判断参与合并的 Part 是否满足条件,总大小与最大大小之比需大于等于 base。

       执行合并时机在每次插入数据后,但并非每次都会真正执行合并操作。对于给定的多个 Part,选择最适合合并的红轰炸源码组合是一个数学问题,ClickHouse 限制为相邻 Part 合并,降低决策复杂度。最终,通过穷举找到最优组合进行合并。

       合并过程涉及对有序数组进行多路合并。ClickHouse 使用 Sort-Merge Join 类似算法,通过顺序扫描多个 Part 完成合并过程,保持有序性。算法复杂度为 Θ(M * N),其中 M 为 Part 长度,N 为参与合并的 Part 数量。

       对于非主键字段,ClickHouse 提供两种处理方式:Horizontal 和 Vertical。Vertical 分为两个阶段,分别处理非主键字段的合并和输出。

       源码解析包括 Merge 触发时机、选择需要合并的 Parts、执行合并等部分。触发时机主要在写入数据时,考虑执行 Mutate 任务后。选择需要合并的 Parts 通过 SimpleMergeSelector 实现,考虑了与 TTL 相关的特殊 Merge 类型。执行合并的类为 MergeTask,分为三个阶段:ExecuteAndFinalizeHorizontalPart、VerticalMergeStage。

       Merge 算法是 MergeTree 高性能的关键,平衡写入放大与查询性能,是数据整理过程中的必要步骤。此算法通过参数和决策逻辑实现了在不同目标之间的权衡。希望以上信息能帮助你全面理解 Merge 算法。

期SpringBoot + Mybatis-plus + ClickHouse 增删改查入门教程

       本文将带你入门SpringBoot与Mybatis-plus结合ClickHouse的增删改查操作。针对ClickHouse特有的SQL语法差异,我们通过扩展Mybatis-puls源码来实现修改和删除功能。

       首先,SqlMethodDiv.java中的枚举类定义了SQL脚本的规则。

       然后,UpdateByIdClickHouse.java类继承自AbstractMethod,重写injectMappedStatement方法,适应ClickHouse的更新语句。

       接着,ClickHouseSqlInjector.java负责注册这个自定义的SQL注入器,以集成到DefaultSqlInjector中。

       SuperMapper通过扩展BaseMapper,让所有Mapper类都能支持ClickHouse的特有功能。

       最后,通过单元测试验证实现效果,源码可在github.com/saimen/cli...找到。

       作者刘贤松在blog.csdn.net/qq_...分享了详细教程,所有内容均尊重原著,如需更多信息,请关注“Java精选”公众号。

       如果你在寻找交流平台,可以直接在公众号Java精选中回复“加群”加入读者群。此外,Java精选还提供了丰富的面试题库和前沿技术分享,包括微信小程序,以及更多技术内容推荐,如「大咖笔记」公众号。

       如果觉得文章有价值,请不要吝啬你的点赞和分享,让我们共同学习进步!

Clickhouse安装部署

       ClickHouse可在包括x_、AArch和PowerPCLE架构在内的Linux、FreeBSD或Mac OS X系统上运行。对于不支持SSE 4.2的CPU或AArch、PowerPCLE架构的处理器,建议从源代码构建ClickHouse。

       针对CentOS 7系统,快速安装步骤如下:

       1. 访问ClickHouse官网,选择CentOS或RedHat进行安装。

       2. 启动客户端,运行命令clickhouse-client #启动客户端默认在localhost:和clickhouse-client --host=localhost --port= --user=xxx --password=xxx -m来配置服务器,并修改/etc/clickhouse-server/目录下的config.xml文件以调整listen_host和相关端口。

       系统管理命令包括:

       1. systemctl start clickhouse-server启动服务

       2. systemctl stop clickhouse-server停止服务

       3. systemctl status clickhouse-server查看服务状态

       ClickHouse的目录结构如下:

       1. /var/log/clickhouse-server/ - 包含日志文件

       2. /etc/clickhouse-server/ - 包含全局配置文件config.xml和用户配置文件users.xml

       3. /var/lib/clickhouse/ - 包含数据文件和元数据文件,数据文件主要位于data和metadata文件夹中。

       集群搭建步骤包括:

       1. 在每台服务器上安装ClickHouse,参照单机安装方法。

       2. 修改配置文件/etc/clickhouse-server/config.xml,配置远程服务器、Zookeeper(如果已部署)以及宏定义。

       3. 创建数据库和表:

       1. 使用命令CREATE DATABASE db_name ON CLUSTER cluster ENGINE = db_engine(...)来创建数据库,其中db_name为数据库名称,cluster为集群名称,db_engine为数据库引擎。

       2. 创建本地表和分布式表,根据需要调整表引擎。

       3. 进行数据插入和查询操作,测试分布式和单分片多副本环境。

       通过上述步骤,可实现ClickHouse的安装部署,满足不同场景的数据处理需求。

大数据ClickHouse(二):多种安装方式

       Clickhouse提供了多种安装方式,包括rpm安装、tgz安装包安装、docker镜像安装、源码编译安装等。本文将主要介绍基于rpm安装包安装Clickhouse的方法。

       在安装前,需要确保服务器支持SSE4.2指令集,可以通过命令查询Linux系统是否支持此指令集。若不支持,则需通过源码编译特定版本进行安装。

       一、安装包下载

       点击ClickHouse rpm安装包查询地址,在Linux系统中使用wget命令下载对应的ClickHouse版本。选择一台服务器创建/software目录并进入此目录。执行命令下载ClickHouse所需rpm安装包,需要下载以下四个rpm安装包。

       二、单节点安装

       选择一台服务器,直接将下载好的ClickHouse安装包安装即可。安装顺序为:点击安装包进行安装,然后按照依赖关系安装各个rpm包。

       启动与停止服务

       启动clickhouse-server服务,使用命令行客户端连接服务。关闭ClickHouse服务。

       三、分布式安装

       Clickhouse支持分布式搭建。首先,在三台服务器上分别安装Clickhouse所需的安装包。接着搭建zookeeper集群并启动,配置外网访问。在每台节点的/etc/clickhouse-server/config.xml文件中配置集群名称、分片与副本等信息。配置完成后,在每台节点上启动Clickhouse服务。

       四、rpm其他方式安装

       除了下载rpm包进行安装,还可以配置Clickhouse的yum源,使用yum命令直接进行安装。首先添加Clickhouse的官方yum源,然后通过yum命令安装Clickhouse server和client。

       在CentOS 7中,使用配置yum源方式安装Clickhouse后,启动时使用命令:systemctl start clickhouse-server。

clickhouse新特性之---clickhouse-keeper

       clickhouse-keeper是clickhouse社区在.8版本中引入的新特性,它旨在替代zookeeper,提供一个完全兼容zookeeper协议的分布式协调服务。此功能尚处于预生产阶段,官方仍在完善中,因此推荐在准备将其用于生产环境前先稍加等待。

       clickhouse-keeper通过底层的raft协议(nuraft库)实现多节点之间状态的线性一致性,相较于zookeeper的ZAB协议,它在一致性保障上有所不同。在性能和可靠性方面,clickhouse-keeper提供了以下几点优势:

       1. **部署方式**:clickhouse-keeper提供了三种不同的部署方式,包括独立部署、每个shard一组keeper,以及所有shard共享一组keeper。这使得用户可以根据自身需求灵活选择部署策略。

       2. **数据迁移**:为了将zookeeper中的数据迁移到keeper中,官方提供了一个迁移工具clickhouse-keeper-converter,它能够将zk中的数据导出为keeper能接受的snapshot格式,简化了迁移过程。

       在源码走读方面,以keeper作为独立进程启动时,其核心代码流程涉及以下几个关键点:

       1. **入口**:从mainEntryClickHouseKeeper到Keeper::main再到KeeperTCPHandler::runImpl,这是整个流程的开始。

       2. **KeeperTCPHandler**:这是keeper中处理TCP请求的回调,它负责接收客户端请求并处理。

       3. **KeeperDispatcher**:在KeeperTCPHandler中,依赖KeeperDispatcher来处理客户端请求,并保持keeper集群内状态的一致性。

       4. **初始化**:KeeperDispatcher启动时,会在后台生成三个线程,负责集群的主流程。

       5. **KeeperServer**:基于nuraft实现,构建了一个完整的raft实例,它包括KeeperStateMachine、KeeperStateManager、KeeperLogStore等组件,共同构成了keeper的核心功能。

       6. **Log Store/State Machine/State Manager**:在nuraft库中,这三者都需要用户自定义实现。在clickhouse-keeper中,实现了这些关键功能,确保了数据的可靠存储和一致性管理。

       7. **KeeperStorage**:在内存中存储所有数据,实现类似zk的状态机功能,包含各种逻辑操作、会话管理等。

       8. **KeeperSnapshotManager**:管理所有快照文件,支持快照的序列化与反序列化,确保了数据的持久性和恢复能力。

       9. **KeeperStateMachine**:实现了与Zookeeper相同的内部状态,以及对多个snapshot的管理,支持快照的序列化和反序列化,保证了集群的状态一致性。

       . **参考**:了解clickhouse-keeper和相关技术的更多信息,可以参考以下资源:

       altiny ppt: slideshare.net/Altinity...

       clickhouse-keeper文档: clickhouse.com/docs/zh/...

       nuraft文档: github.com/eBay/NuRaft/...

       本文使用 文章同步助手 同步完成。