1.不知道哪位大大可以解释下网格交易法?
2.投资者情绪情绪指数构建及应用
不知道哪位大大可以解释下网格交易法?
网格交易是啥子这是一种仓位策略,用于动态调仓。该大法秉持的原则是"仓位策略比选股策略更重要"。当然,我们做策略的,选出好的全民影院 源码股票池是我们孜孜不倦的追求~~
几个基本概念
1.底仓价:价格的标准线,建仓和调仓的重要依据。
2.低吸高抛:仓位控制贯彻低吸高抛,绝不追涨杀跌。根据网格设置买卖价位。下面举个例子
在底仓价的附近,我们根据网格的大小,比如每跌3%按仓位买入(第一档:买%,第二档:买%,水印源码透明第三档:买%,第四档:买%)。要注意的是,这里买卖不是绝对的定量,而是调仓到对应仓位。如果第一次跌破3%,而后上涨到5%时,是不操作的,因为下跌时只建了%的仓,而上涨5%的仓位是%,不够抛出。
3.网格大小:上图给出了3种网格大小。特点是读懂jquery源码买入网格小于卖出网格。这种不对称编织网格的道理在于网格的目的是网获利润,将利润建立在趋势的必然性中,而不仅仅是靠震荡的偶然性。
先讲特点和局限吧
首先,定理&公理:没有万能的策略。
1.趋势决定策略的成败。在长期的上涨趋势中策略才能获得满意回报。
2.选股集中在波动大、成长性好的中小市值股票。不断盘整的周期股、大盘股和业绩不佳的垃圾股踩中就麻烦了。
3.底仓价格设定在安全边际内。在估值顶部设立底仓价格风险极大,hsqldb源码 存储会造成很大的损失。
4.牛市表现不佳。分散的仓位策略,没有依据价格形态来修改网格,都可能在牛市中跑输大盘。降低贝塔的代价就是阿尔法也较低。
5.买卖规则不灵活,可能使一些重要的突破支持或阻力位置的买卖点被忽略在网格之外。
来看看策略步骤
1.选股
重点行业:I 互联网和相关服务,I 软件和信息技术服务业
低估值PE小:PE<
小市值:分行业按市值排列选市值小的只
高波动:分行业在市值最小的只中选出过去一年波动率最大的5只股票
So,我们的股票池有只股。每3个月按上述条件更新一次股票池,更新时不在新股票池的原谅帽源码股票全部清仓。
2.网格:[-3%买,5%卖]、[-5%买,%卖]、[-8%买,%卖]、[-%买,%卖]
四种大小的网格都会相应尝试一下看看效果。
3.资金安排:在仓位控制时,满仓的概念是(总资金/股票池总数*2.5)
后面的乘数是为了提高资金利用率,因为3个月的周期内可能不是每只股票都能达到满仓。
好啦,收韭菜的时候到了
回测做了很多组,大致是分市场行情(牛、震荡和熊)各做了一次。然后在震荡期调整网格大小分别做了4次
回测详情与代码见 w(防)w(度)w(娘).joinquant.com/post/
投资者情绪情绪指数构建及应用
探索情绪指数的构建艺术与在投资策略中的非凡作用。一、构建情绪指数的智慧工法
情绪指数的构建并非易事,Baker和Wurgler()的开创性工作为我们提供了一条路径。他们运用主成分分析(PCA),从众多代理变量如换手率和新增账户数中,剔除宏观变量如CPI的影响,提取出纯粹反映投资者情绪的信号。他们的策略是多元回归求残差,然后通过主成分分析筛选共同信息,这些信息即构成了情绪的维度。 PCA的核心在于数据降维,通过将众多维度的数据映射到少数关键主成分上,保留关键信息。想象一条直线上的点,PCA就像找一个新坐标系,只用一个坐标就能描述所有点。具体步骤包括数据标准化、协方差矩阵求解、主成分提取,以及样本投影到新特征空间。二、我国学者的创新提升
胡昌生与池阳春()对情绪指数构建提出深化见解。他们挑战了原始方法的局限,提出当情绪成分占比小或有其他共同成分干扰时,单一的第一主成分可能并不完全代表情绪。他们选取了更丰富的代理变量,并结合CPI、MCI和Iavr等宏观经济指标,得出四个主成分,区分理性与非理性情绪的特性。 研究结果显示,理性情绪如封闭式基金折价率与消费者信心指数,更符合长期收益预测;而非理性情绪如换手率和开户数,短期影响显著,但长期可能产生负向影响。这启示我们,理性情绪在长期投资中更为稳健,而适时把握非理性情绪可能在短期内带来收益机会。三、情绪指数在投资策略中的实战运用 情绪指数的洞察力为策略制定提供了新视角。理性与非理性情绪在不同时间阶段对收益的预测不同,这提示我们设计策略时应适时调整。以换手率作为非理性情绪指标,短期跟随非理性波动,长期则侧重理性情绪的引导,将有助于优化市场择时,获取超额收益。 在策略实践中,我们可以尝试使用简单但实用的方法,如选择特定股票池并设置大盘止损,同时,寻找更全面的市场数据,如换手率和开户数数据,将有助于提升主成分分析的精确性。 参考文献:[1] 胡昌生, 池阳春. 《投资者情绪:理性与非理性》[2] 胡昌生, 池阳春. 《情绪预测性与市场择时》 深入理解情绪指数,就在JoinQuant策略源码和社区里,一起探索情绪引导下的投资智慧。