皮皮网
皮皮网

【rtos 任务源码】【行程卡和溯源码的不同】【易语言写魔兽世界辅助源码】linearregression源码分析

来源:tomcat源码导入源码导入 发表时间:2025-01-04 09:21:39

1.如何在windows中编写R程序包
2.声线年龄层怎么划分?
3.Python机器学习系列拟合和回归傻傻分不清?一文带你彻底搞懂它

linearregression源码分析

如何在windows中编写R程序包

       åœ¨Windows环境下如何编写R程序包,即生成供linux环境编译运行的tar.gz文件,也生成供windows下使用的.zip文件呢?其实并不复杂,只要下载一些工具软件,按照相应的步骤填写相应的“表格”,继而运行一些简单的指令,就可以生成R的程序包了。

       ç¼–写R程序包通常包括以下几步:

       ï¼ˆ1) 工具软件Rtools的安装和备选软件的安装。

       ï¼ˆ2) r脚本的准备,也就是用来生成程序包的函数脚本。

       ï¼ˆ3) 利用R中自带的package.skeleton()函数,生成制作包所需要的Description 文件和帮助文件帮助文件.rd。

       ï¼ˆ4) 编辑该函数生成的Description 文件和帮助文件.rd

       ï¼ˆ5) 在windows cmd的命令行中输入相应的命令,生成zip文件或者.tar.gz

       ä¸‹é¢æˆ‘们来一起建立只有一个函数的R程序包,来详细说明:

       ä¸€ 工具软件安装和配置

       åˆ¶ä½œr包的工具软件包括Rtools,HTML编译器,MikTeX 或Cte等(备选软件不一定要安装):

       1 工具软件安装

       ï¼ˆ1)Rtools(制作R包的主要工具)

       Rtools是在windows下制作R包的一系列工具,其中包括

       1) CYGWIN 在Windows下模拟UNIX环境

       2) MinGW编译器,可用来编译C和Fortran语言。

       3) Perl

       ä¸‹è½½åœ°å€ï¼š

       Maintainer: helixcn <zhangjl@ibcas.ac.cn>

       Description: To give the exactly results of linear regression.

       License: GNU 2 or later

       LazyLoad: yes

       ï¼ˆ2)man文件夹中.rd文件编辑

       man文件夹中包含两个文件 linmod.Rd和linmod-package.Rd,分别是对linmod()函数和linmod包的介绍,下面逐项填写:

       1) linmod.Rd

       \name{ linmod}

       \Rdversion{ 1.1}

       \alias{ linmod}

       %- Also NEED an '\alias' for EACH other topic documented here.

       \title{

       linear regression

       }

       \description{

       to give the more exactly results of linear regression

       }

       \usage{

       linmod(x,源码 y)

       }

       %- maybe also 'usage' for other objects documented here.

       \arguments{

       \item{ x}{

       a numeric design matrix for the model

       }

       \item{ y}{

       a numeric vector of responses

       }

       }

       \details{

       %% ~~ If necessary, more details than the description above ~~

       }

       \value{

       %% ~Describe the value returned

       %% If it is a LIST, use

       %% \item{ comp1 }{ Description of 'comp1'}

       %% \item{ comp2 }{ Description of 'comp2'}

       %% ...

       }

       \references{

       Friedrich Leisch, Creating R Packages: A Tutorial

       }

       \author{

       helixcn

       }

       \note{

       Please read Friedrich Leisch,

       }

       %% ~Make other sections like Warning with \section{ Warning }{ ....} ~

       \seealso{

       %% ~~objects to See Also as \code{ \link{ help}}, ~~~

       }

       \examples{

       ##---- Should be DIRECTLY executable !! ----

       ##-- ==> Define data, use random,

       ##-- or do help(data=index) for the standard data sets.

       ## The function is currently defined as

       function (x, y)

       {

       qx <- qr(x)

       coef <- solve.qr(qx, y)

       df <- nrow(x) - ncol(x)

       sigma2 <- sum((y - x \%*\% coef)^2)/df

       vcov <- sigma2 * chol2inv(qx$qr)

       colnames(vcov) <- rownames(vcov) <- colnames(x)

       list(coefficients = coef, vcov = vcov, sigma = sqrt(sigma2),

       df = df)

       }

       }

       % Add one or more standard keywords, see file 'KEYWORDS' in the

       % R documentation directory.

       \keyword{ ~kwd1 }

       \keyword{ ~kwd2 }% __ONLY ONE__ keyword per line

       2)linmod-package.Rd

       \name{ linmod-package}

       \Rdversion{ 1.1}

       \alias{ linmod-package}

       \alias{ linmod}

       \docType{ package}

       \title{ Linear Regression Modification}

       \description{ to Give the more exactly output of linear regression rather than R default}

       \details{

       \tabular{ ll}{

       Package: \tab linmod\cr

       Type: \tab Package\cr

       Version: \tab 1.0\cr

       Date: \tab --\cr

       License: \tab GNU 2.0 or later\cr

       LazyLoad: \tab yes\cr

       }

       ~~The aim of the package was to give the more exactly output of linear regression~~ linmod~~

       }

       \author{ helixcn

       Maintainer: helixcn <helixcn@.com>}

       \references{

       Friedrich Leisch,,Creating R Packages: A Tutorial

       }

       \seealso{ lm}

       \examples{

       data(cats, package="MASS")

       mod1 <- linmod(Hwt~Bwt*Sex, data=cats)

       mod1

       summary(mod1)

       }

       å›› 通过cmd创建R包

       å¼€å§‹>运行>cmd

       é”®å…¥ cd c:\pa\ 将工作目录转移到c:/pa下

       é”®å…¥ Rcmd build --binary linmod 制作window zip包

       é”®å…¥ Rcmd build linmod 制作linux平台下可运行的tar.gz包

       å‘½ä»¤è¿è¡Œå®Œä¹‹åŽå¯ä»¥å‘现,在c:/pa/文件夹下分别生成了linmod.zip和linmod.tar.gz压缩包。

       æ³¨æ„R CMD 系列命令是在windows控制台下运行,而非R控制台

       å‚考网址

       [1]/post/5cfeda9d3dc

       作者:Michael Notter

Python机器学习系列拟合和回归傻傻分不清?一文带你彻底搞懂它

       在Python机器学习的探索中,理解拟合与回归这两个概念至关重要。分析它们虽然都涉及数据与模型的源码关联,但有着明确的分析差异。拟合是源码rtos 任务源码个广义概念,涵盖了将离散数据点通过线性或非线性方式映射到一条曲线的分析行程卡和溯源码的不同整个过程,旨在减小数据点与拟合曲线的源码偏差。回归分析则是分析拟合的一种具体实现,它探究变量间的源码定量关系,以建立模型。分析

       回归拟合则根据复杂度分为几个类别。源码一元线性回归如np.polyfit方法,分析通过求解系数来拟合数据,源码易语言写魔兽世界辅助源码如法一中的分析[8., -.],sklearn的源码LinearRegression方法也得到类似结果。曲线拟合如curve_fit则适用于非线性模型,如法三中的龙腾活跃智盈指标源码[8., -.]。一元多项式回归,如2次多项式,np.polyfit、sklearn的布林线张口提示指示源码LinearRegression和curve_fit都能得到系数,只是形式不同。

       对于更复杂的函数拟合,如指数函数,curve_fit依然是首选,如得到的最佳系数[2., 0.]。这些方法不仅适用于一元,也是多元回归建模的基础。想深入了解数据集和源码的朋友,可以随时联系作者获取更多信息。

相关栏目:综合