1.VB6ä¸å®ç°3DES
2.诚心求助朋友教我用VB绘画 三维立体图形
VB6ä¸å®ç°3DES
"ææä¸ä¸ªç¡®è®¤æ éçç¨åº"
å ¶å®å®ææ°æ®å å缩æè¿å¶bcdå¼ï¼æ°æ®é¿åº¦ä¸ºåå ä¸åï¼ï¼å¤çå®åæç»æåå±å¼æè¿å¶ä¸²ï¼é¿åº¦å åï¼å³ä¸ªå符ï¼
ædllå½æ°å¯ç¨ï¼åä½ ç确认æ éçç¨åºä¸æ ·ææï¼ï¼
Private Declare Function icePub_desEncryptionHex Lib "icePubDll.dll" (ByVal strInputHexstring As String,源码ByVal strOutputHexstring As String,ByVal strKeyHexstring As String) As Integer
Private Declare Function icePub_desDecryptionHex Lib "icePubDll.dll" (ByVal strInputHexstring As String,ByVal strOutputHexstring As String,ByVal strKeyHexstring As String) As Integer
Private Declare Function icePub_3desEncryptionHex Lib "icePubDll.dll" (ByVal strInputHexstring As String,ByVal strOutputHexstring As String,ByVal strDoubleKeyHexstring As String) As Integer
Private Declare Function icePub_3desDecryptionHex Lib "icePubDll.dll" (ByVal strInputHexstring As String,ByVal strOutputHexstring As String,ByVal strDoubleKeyHexstring As String) As Integer
Dim str1 As String
str1 = Space()
a2 = icePub_desEncryptionHex("", str1, "")
MsgBox str1
str1 = Space()
a2 = icePub_desDecryptionHex("", str1, "")
MsgBox str1
str1 = Space()
a2 = icePub_3desEncryptionHex("", str1, "")
MsgBox str1
str1 = Space()
a2 = icePub_3desDecryptionHex("", str1, "")
MsgBox str1
'icePubDll.dllæ¶é®ä»¶å³å¯
'æ/read.php?tid=ä¸è½½å³å¯
诚心求助朋友教我用VB绘画 三维立体图形
vb里绘制线框的立体图形很简单,用到投影算法即可。绘制
所谓投影算法就是源码把三维空间里的xyz映射成xy的一种方法,网上查一下“投影算法”关键字就能找到公式。绘制matlab纸币识别源码
比如场景里有八个点,源码它们都各自有xyz坐标,绘制鑫云源码在投影成xy以后,源码再按照一定顺序用Line连接线即可。绘制再结合上Sin和Cos还能让图形旋转。源码但一般来说我们习惯的绘制三维图像还涉及光、颜色、源码纹理填充,绘制这就比较麻烦了。源码jdk原理源码还得有消隐算法……
总之如果打算自己弄得化很复杂,绘制想提高运算效率建议学习一下 DirectX SDK,源码有VB版的源码交易实战。
3D投影2D计算公式是这样的
P( f ):(x, y, z)==>( f*x / z + XOrigin, f*y / z + YOrigin )
其中f是“焦点距离”,它表示从观察者到屏幕的距离,一般在到之间。ai搞笑源码XOrigin和YOrigin是屏幕中心的坐标。
再给你些对与3D旋转和缩放的矩阵,矩阵转化成公式即可。
二维坐标系公式。
二维笛卡儿坐标系的平移等式。
t( tx, ty ): ( x, y ) ==> ( x + tx, y + ty )
二维笛卡儿坐标系的缩放等式。
s( k ): ( x, y ) ==> ( kx, ky )
旋转等式:
r( q ): ( x, y ) ==> ( x cos(q) - y sin(q), x sin(q) + y cos(q) )
三维坐标系公式。
平移公式:
t( tx, ty, tz ): ( x, y, z ) ==> ( x + tx, y + ty, z + tz )
平移(tx, ty, tz)的矩阵
| 1 0 0 0 |
| 0 1 0 0 |
| 0 0 1 0 |
| tx ty tz 1 |
缩放公式:
s( k ): ( x, y, z ) ==> ( kx, ky, kz )
缩放(sx, sy, sz)的矩阵
| sx 0 0 0 |
| 0 sy 0 0 |
| 0 0 sz 0 |
| 0 0 0 1 |
旋转公式(围绕Z轴):
r( q ): ( x, y, z ) ==> ( x cos(q) - y sin(q), x sin(q) + y cos(q), z )
绕X轴旋转角q的矩阵
| 1 0 0 0 |
| 0 cos(q) sin(q) 0 |
| 0 -sin(q) cos(q) 0 |
| 0 0 0 1 |
绕Y轴旋转角q的矩阵:
| cos(q) 0 -sin(q) 0 |
| 0 1 0 0 |
| sin(q) 0 cos(q) 0 |
| 0 0 0 1 |
绕Z轴旋转角q的矩阵:
| cos(q) sin(q) 0 0 |
|-sin(q) cos(q) 0 0 |
| 0 0 1 0 |
| 0 0 0 1 |