1.UE4-Slate源码学习(二)slate事件触发
2.Envoy源码分析之Dispatcher
3.Android焦点移动requestFocus 源码分析一
4.flink自定义trigger-实现窗口随意输出
5.学透Vue源码~nextTick原理
UE4-Slate源码学习(二)slate事件触发
在探讨UE4-Slate源码学习中,类源首先进入概念理解阶段,码触虚拟触摸的发源开启会将鼠标左键操作转化为OnTouchStarted事件,使得编辑器下通过鼠标也能触发UI的类源触摸相关事件。实现这一功能的码触关键在于
FSlateApplication类中两个方法:IsFakingTouchEvents()用于判断是否开启虚拟触摸,SetGameIsFakingTouchEvents()用于设置虚拟触摸状态。发源货币兑换预约源码
在平台调用Slate时,类源根据不同事件类型创建FPointerEvent对象,码触作为事件处理的发源载体,其包含触发事件的类源按键信息、鼠标位置、码触索引、发源是类源否为触摸事件等数据,用于后续事件的码触精确处理。
Slate用户类FSlateUser包含了索引、发源鼠标位置、聚焦对象、捕获状态和WidgetPath等信息,通过实例化多个FSlateUser对象,程序可以追踪多个用户输入,例如在多人游戏场景中,能够精准识别当前谁触发了A键。
聚焦和捕获功能分别通过Widget的聚焦和捕获机制实现,当聚焦后,事件将被相应Widget接收,黑马起跳免费源码并触发一系列聚焦相关的事件,如OnFocusReceived、OnFocusChanging、OnFocusLost等。以按钮点击为例,点击按钮触发OnMouseDown事件,若按钮被捕获,则移动到按钮外松开鼠标仍会触发按钮的OnMouseUp事件。
在处理输入事件时,会涉及多种策略,如FArrangedWidget、FArrangedChildren和FWidgetPath等,用于确定事件处理的路径和流程。FEventRouter类根据输入事件和用户输入策略(FDirectPolicy、FToLeafmostPolicy、FTunnelPolicy、FBubblePolicy)来组织和分发事件。
处理鼠标和触摸输入的流程分为OnMouseDown和OnTouchStarted,通过Route函数根据策略处理事件,实现事件的触发和响应。移动事件则通过OnMouseMove和OnTouchMoved处理,根据输入类型和用户状态执行相应操作。拖拽事件OnDragDetected则在拖拽开始时触发,允许开发者自定义拖拽行为和数据传递。汇艺素材源码
最终,事件处理完成后,将调用相关函数清理记录,包括更新用户位置和路径,以及触发OnMouseUp或OnTouchEnded等事件。
UE4-Slate源码的学习涵盖了事件触发、用户输入处理、事件路由策略等多个方面,理解这些机制和流程对于深入掌握Slate框架至关重要。源码版本4..2提供了丰富的功能和细节,为开发者提供了一套强大且灵活的UI管理解决方案。
Envoy源码分析之Dispatcher
Dispatcher在Envoy中扮演着核心角色,是EventLoop的实现,负责任务队列、网络事件处理、定时器与信号处理等关键功能。其设计与Libevent库紧密集成,并通过封装与抽象,简化了内存管理。Dispatcher通过EventLoop提供了非阻塞的事件循环机制,支持多种事件类型,如FileEvent、SignalEvent、Timer等,文华变色kdj源码通过继承unique_ptr来管理Libevent的C结构,利用RAII机制自动处理内存。SignalEvent通过初始化与添加事件使事件处于未决状态。Timer事件通过初始化与添加到Dispatcher中实现超时触发机制,确保在超时时执行。Envoy通过封装Libevent的事件类型,实现事件的抽象与统一处理。FileEvent封装了socket套接字相关的事件,支持主动触发与事件类型的设置。Dispatcher内部的任务队列用于调度与处理回调任务,通过post方法投递任务至队列,并通过循环运行这些任务。Envoy还引入了DeferredDeletable接口,允许对象在特定时间点被安全地析构,避免回调时对象已析构导致的野指针问题,同时确保析构操作在Dispatcher生命周期内完成,避免内存泄漏与程序崩溃。通过实现延迟析构机制,Envoy能够在回调执行前确保对象已正确析构,保障了程序的稳定性和安全性。这一设计与任务队列的实现类似,但在对象析构逻辑上有所不同,更专注于解决多线程环境下对象生命周期管理的复杂性。
Android焦点移动requestFocus 源码分析一
本文从源码角度深入分析了Android设备中焦点移动和点击触发机制。准源码编程软件当用户点击上下左右按键时,UI会显示底部阴影,而点击Enter键则触发对应View的点击事件。这整个过程主要涉及到的方向按键处理、普通按键分发流程以及系统功能按键处理。
点击方向按键的事件首先由InputMethodManager$ImeInputEventSender接收,然后交由ViewRootImpl处理。ViewRootImpl通过一系列State的链式调用,最终在ViewGroup的requestFocus方法中被调用,最终调用View的requestFocus方法。值得注意的是,按键事件是从输入法(ImeInputEventSender是用于接收输入法按键事件的应用组件)传递的,而非ViewRootImpl直接处理。
普通按键的分发流程中,ViewRootImpl的WindowInputEventReceiver可以接收到键盘输入事件,然后分发给View.dispatchKeyEvent,最后可能触发Activity的onKeyDown与onKeyUp方法。然而,系统会直接处理大部分功能按键(如亮度调节、音量键、媒体按键等),而不会将它们分发给View进行处理。
系统功能按键处理在InputMethodManager中定义,这部分会先将按键事件传递给输入法进行处理,然后将结果传给与输入法绑定的window。InputMethodManager中的mCallback实现类是ViewRootImpl$ImeInputStage,如果handled为true表示输入法已经处理过事件,否则会进入ViewRootImpl的finish或forward方法。
View的焦点移动主要通过View.requestFocus和requestFocusNoSearch方法实现。无论通过按键还是手动调用方法,流程都会最终指向requestFocusNoSearch,进一步处理焦点获取和释放逻辑。ViewGroup重写了handleFocusGainInternal方法来处理焦点获得的内部流程,首先清理当前ViewGroup的mFocused标记,然后调用super.handleFocusGainInternal方法。通过层层递归,整个View树会更新完成焦点状态,并通知OnFocusChangeListener监听方法,更新背景状态以突出焦点View。
descendantFocusability标记位在ViewGroup中起着决定性作用,它定义了ViewGroup对子View焦点的处理方式,有三种行为。当ViewGroup的一个子View获取焦点时,该ViewGroup本身并不会获得焦点,只有子View的mPrivateFlags标记位被赋值为PFLAG_FOCUSED时,才表明获取了焦点。isFocused与hasFocus不同,isFocused用于判断当前View是否具有焦点。
当需要查询当前获取到焦点的View时,可以使用findFocus方法。该方法在View类中定义,而在ViewGroup类中重写了它,实现逻辑简单,主要检查当前ViewGroup的mPrivateFlags标记位是否包含PFLAG_FOCUSED,若包含则返回当前View,否则返回null。
综上所述,本文从源码角度详细解析了Android设备中焦点移动和点击事件触发的实现机制,包括按键事件的处理流程、View的焦点获取与释放机制以及descendantFocusability标记位的作用。
flink自定义trigger-实现窗口随意输出
之前,我曾简要介绍过flink的窗口以及与Spark Streaming窗口的对比。
关于flink的窗口操作,尤其是基于事件时间的窗口操作,以下三个关键知识点是大家需要掌握的:
flink提供了多种内置的触发器,其中用于基于事件时间的窗口触发器被称为EventTimeTrigger。
若要实现基于事件时间的窗口随意输出,例如每个元素触发一次输出,我们可以通过修改这个触发器来实现。
可能你没有注意到之前提到的触发器的重要性,因为没有触发器的话,在允许事件滞后的情况下,输出时间会延迟较大。而我们需要尽早看到数据,这时就可以自定义窗口触发。
自定义触发器
可以通过修改基于处理时间的触发器来实现,以下是源码:
主要实现逻辑是在onElement函数中,增加了每个元素触发一次计算结果输出的逻辑。
主函数
代码测试已通过。
明天将在知识星球分享一篇干货和代码案例。
学透Vue源码~nextTick原理
nextTick的官方解释:在下次 DOM 更新循环结束之后执行延迟回调。在修改数据之后立即使用这个方法,获取更新后的 DOM。
例如:我们有如下代码:
第一次输出结果为hello world,第二次结果为更新后的Hello World。
即我们在update方法中第一行对message的更新,并不是马上同步到span中,而是在完成span的更新之后回调了我们传入nextTick的函数。
Vue中数据的更新不会同步触发dom元素的更新,也就是说dom更新是异步执行的,并且在更新之后调用了我们传入nextTick的函数。
那么问题来了,Vue为什么需要nextTick呢?nextTick又是如何实现的呢?
为了理解nextTick的设计意图和实现原理,我们需要理解Vue的响应式原理,包括数据劫持、依赖收集和数据代理等概念。我们需要实现一个简易版的Vue,用于创建Vue对象,处理参数el和data,并使用Object.defineProperty()方法实现数据劫持。
接下来,我们实现Observe类用于监听数据变化,通过get方法收集依赖并存储到Dep类中。Dep类保存依赖,并在数据变更时调用Watcher类,Watcher类观察数据变化,触发依赖收集并在数据变更后执行更新。
通过以上的代码,我们就实现了一个简易版的Vue,用于模拟dom变更。
为什么要使用nextTick?当我们对数据进行频繁更新时,可能会导致严重的性能问题。Vue使用nextTick来优化这个问题,避免频繁的DOM更新操作,只在合适的时机执行一次DOM更新。
为了实现异步更新,Vue使用事件循环机制。每次事件循环期间,Vue将数据变更缓存起来,只在最后一次视图渲染时执行一次DOM更新操作。
Vue中nextTick的实现涉及异步更新队列的概念。Vue为每个要观察的数据创建Watcher对象,当数据变更时,会触发Watcher对象的update方法,但不再立即执行更新操作,而是将变更的Watcher对象保存到待更新的队列中。在微任务中,Vue执行更新队列中的更新操作。
Vue实现nextTick的核心原理包括依赖收集、数据劫持、事件循环机制和异步更新队列。通过这些原理,Vue能够在确保数据响应式的同时,优化性能,减少无效的DOM更新操作。