1.分享Apollo全局规划(Routing)模块最全教程
2.终于把Apollo存储加密这件事搞定了 | 周末福利!源码研究
3.Apollo6.0安装文档教程——环境搭建、源码研究安装、源码研究编译、源码研究测试
4.无人驾驶技术入门(十一)| 无人驾驶中的源码研究CAN消息解析
5.Apollo EM中path_assesment_task相关细节的讨论
6.Apollo OSQP路径规划
分享Apollo全局规划(Routing)模块最全教程
本文提供Apollo全局规划(Routing)模块的全面解读,旨在帮助学习全局路径规划及理解Apollo框架。源码研究同花顺周期源码资料内容丰富,源码研究覆盖源代码注释(包含详尽代码注释)、源码研究流程图(使用思维导图及各种框架流程图)、源码研究核心算法解读(每个涉及算法均有解析及推导)、源码研究相关软件工具链学习(如C++、源码研究Python、源码研究ROS、源码研究Ubuntu、源码研究Git等)、源码研究行业现状及报告等多个方面。此套资料颗粒度极高,总结整理不易。 如需获取资料,请私聊或访问链接:mbd.pub/o/m/author-aWuU... 获取资料后,后续有任何问题可随时咨询。 以下是学习资料列表概览: 资料数量众多,每份文档通常超过几十页,内容详细深入。部分资料截图如下: 扩展学习资源: 欲了解Apollo其他模块,推荐以下资源:分享Apollo决策规划(planning)模块最全教程 - 知乎 (zhihu.com)
分享Apollo预测(prediction)模块最全教程 - 知乎 (zhihu.com)
分享Apollo控制(control)模块最全教程 - 知乎 (zhihu.com)
终于把Apollo存储加密这件事搞定了 | 周末福利!
作者:尹吉欢 转自:微信公众号“程序员私房菜”
本文节选自《Spring Cloud微服务入门实战与进阶》
敏感配置,django成品网站源码如密码等,我们期望进行加密存储,确保其安全性。然而,Apollo框架并未提供数据加密功能。若想实现此功能,有两种方法:一是修改Apollo源码,添加加解密逻辑;二是利用第三方框架进行数据加密。
jasypt-spring-boot是一款基于Spring Boot开发的框架,它可自动解密properties中加密的内容。在Apollo中,我们也可以利用jasypt-spring-boot实现数据的加解密操作。
jasypt-spring-boot的GitHub地址:github.com/ulisesbocchi...
使用jasypt-spring-boot提供的方法对需要加密的配置进行加密,然后将加密内容配置在Apollo中。项目启动时,jasypt-spring-boot会解密Apollo加密的配置,让使用者获取解密后的内容。
创建一个新的Maven项目,并加入Apollo和jasypt的依赖。具体依赖信息如下:
创建一个加密的工具类,用于加密配置。执行main方法后,可以得到如下输出:
input就是hello加密后的内容,将input的值复制存储到Apollo中。存储格式需要遵循一定规则,即需要将加密内容用ENC包起来,搜索小程序源码这样jasypt才会解密这个值。
使用时可以直接根据名称注入配置,例如:
input的值就是解密后的值,使用者无需关心解密逻辑,jasypt框架在内部处理好了。
jasypt整合Apollo也存在一些不足之处。目前,我只发现了以下两个问题:
上述两个问题与jasypt实现方式有关,意味着这种加密方式可能仅适用于数据库密码等场景,启动时可以解密,且仅使用一次。对于需要加密的核心业务配置,jasypt无法支持实时更新。下章节我将讲解如何修改Apollo源码来解决这两个问题。
扩展Apollo支持存储加解密
前文介绍了如何使用jasypt为Apollo中的配置进行加解密操作,基本需求可实现。但仍存在一些不足之处。
jasypt仅在启动时解密带有ENC(xx)格式的配置,当配置发生修改时无法更新。由于Apollo框架本身不具备对配置加解密的功能,若想实现加解密并支持动态更新,就需要修改Apollo源码来满足需求。
修改源码需要重新打包。这里介绍一种简单实现方法:创建一个与Apollo框架中相同类名的类进行覆盖,这样无需替换已使用的客户端。
若配置中心存储的最强指标组合源码内容是加密的,意味着Apollo客户端从配置中心拉取下来的配置也是加密的。我们需要在配置拉取下来后对其进行解密,然后再执行后续流程,如绑定到Spring中。在业务点进行切入后,配置中心加密的内容可自动转换为解密后的明文,对使用者透明。
通过分析Apollo源码,我找到了一个最合适的切入点来完成这项任务,即com.ctrip.framework.apollo.internals.DefaultConfig类。DefaultConfig是Config接口的实现类,配置的初始化和获取都会经过DefaultConfig的处理。
在DefaultConfig内部有一个更新配置的方法updateConfig,可在该方法中对加密数据进行解密处理:
这里使用AES进行解密,意味着配置中心的加密内容也需要使用相同的加密算法进行加密。至于格式,仍使用ENC(xx)格式来标识加密配置内容。解密后将明文内容重新赋值到Properties中,其他流程保持不变。
创建一个加密测试类,加密配置内容,并将其复制存储到Apollo中。输出内容如下:
Ke4LIPGOp3jCwbIHtmhmBA==
存储到Apollo中时,需要用ENC将加密内容包起来,如下:
test.input = ENC(Ke4LIPGOp3jCwbIHtmhmBA==)
使用之前的代码进行测试,Config获取和Spring注入的python的requests源码方式可以成功获取到解密后的数据,并且在配置中心修改后也能实时推送到客户端并成功解密。
本文摘自于《Spring Cloud微服务入门实战与进阶》一书。这是朋友写的一本新书,豆瓣评分8.2。
Apollo6.0安装文档教程——环境搭建、安装、编译、测试
一、环境搭建 为了安装Apollo 6.0,您需要以下环境准备:Ubuntu .,安装教程参阅相关资源。
NVIDIA显卡驱动,根据官方指南进行安装。
Docker引擎,Apollo安装步骤中完成。
NVIDIA容器工具,Apollo安装步骤中完成。
安装过程中,请确保禁用nouveau驱动,操作步骤如下: 在终端中添加指定内容至文件末尾并保存,然后重启系统。重启后执行命令,检查禁用状态。 二、下载源码 前往Apollo下载地址,选择对应版本。 三、安装 安装Docker:进入Apollo 6.0的docker目录,执行安装命令。安装完成后,重启电脑。 安装NVIDIA容器工具:与Docker安装同步进行。 创建Apollo容器:下载所需image,此过程可能耗时较长。成功后,会显示“[OK], Enjoy!”。 进入容器:执行相关命令。 四、编译与测试 编译Apollo:根据容器中的GPU状态(有或无)进行编译。可能遇到的warning如“DimsNCHW”被标记为过时,这是正常现象,不会影响后续使用。 启动Dreamview:可能遇到权限问题,使用chmod进行授权。如果问题仍未解决,授权整个Scripts目录并执行。 Dreamview查看:在浏览器中输入坐标系,调用函数IsPointIn检验所有点是否处于障碍物的内部。下面开始详细讲解IsPointIn函数:首先判断本车的Corner点是否在障碍物边界上,如果不在,则进行下一步取Corner点在与轴方向异侧的两个点,分别于Corner点构成向量,之后做叉乘,叉乘结果若大于0,则比较两个点的y值,若y值结果小于0,则看向量正旋转到目标向量的实际角度是否小于度,若小于,则c由零变为1;若y值结果为大于,则看向量正旋转到目标的实际角度是否大于度,若大于,则c由零变为1。同理再构建另外两个向量,若与上述情况相同,则c由1变为2。最后判断C为奇数还是偶数,如果为奇数,则返回true,表示Corner点处于Obstacle内部。如果为偶数,则表示Corner点在Obstacle外部。
下面举个栗子:对于左图A点的这种情况,0点与3点在Y轴方向上位于A点异侧,0.y<3.y,side>0(即比较向量A-0正旋转到目标向量A-3是否小于度),实际大于度(蓝色箭头),结果为否,则c值仍为0;2点与1点在Y轴方向上位于A点异侧,side<0(即比较向量A-2正旋转到目标向量A-1是否大于度),实际大于度(红色箭头),结果为是,则c值变为1。最终c&1为奇数,表示A点在obstacle之内。
对于右图A点情况,0点与3点在Y轴方向上位于A点异侧,0.y<3.y,side>0(即比较向量A-0正旋转到目标向量A-3是否小于度),实际小于度(红色箭头),结果为是,c值由0变为1;2点与1点在Y轴方向上位于A点异侧,side<0(即比较向量A-2正旋转到目标向量A-1是否大于度),实际大于度(蓝色箭头),结果为是,则c值变为2。最终c&1为偶数,表示A点在obstacle之外。
正旋转相关的知识:叉乘几何含义:须注意:本算法所有的坐标系为上图所示,所以正旋转方向为X轴沿绿三色箭头转到Y轴。
最后依旧借用M星云男神女神镇楼。。
Apollo OSQP路径规划
探索高效优化之路:OSQP在Apollo路径规划中的应用 在追求自动驾驶车辆动态控制的极致平滑性和安全性时,路径规划算法扮演了关键角色。其中,Piecewise Jerk Path Optimizer(PJP)方法通过优化成本函数,为我们提供了理想的轨迹设计。在这个过程中,OSQP作为一种高效且鲁棒的二次规划求解器,凭借其C语言实现和多语言接口,成为了一种不可或缺的工具。 理解矩阵世界:PD/PSD的数学基础 在优化领域,正定矩阵(PD,Positive Definite)在实数域内是关键概念,它要求对称且所有特征值均为正。这意味着它不仅主元和主子式皆为正,而且对于任何非零向量,其内积总是正的。在复数域中,我们关注的是厄米特矩阵(PSD,Positive Semidefinite),它允许非正特征值,但满足上述对称性和内积非负的条件。 Matlab中的强大工具:quadprog与OSQP对比 Matlab的quadprog函数专为处理有线性约束的二次优化问题,它支持'interior-point-convex'算法,提供了直观的问题描述和prob结构体的使用。然而,对于更高效和现代化的解决方案,OSQP以其C++接口的易用性和依赖于Eigen库的优势脱颖而出,osqp-eigen成为了推荐的首选。 深入实践:osqp-eigen的使用与实例 要开始使用osqp-eigen,首先需要从OSQP官网或GitHub下载源代码,并通过git clone --recurse-submodules或GitHub Desktop完成安装,别忘了安装TDM-GCC作为编译工具。在osqp-matlab/examples目录中,你可以找到丰富的实例来实践OSQP在路径规划中的应用。 扩展学习:走向更广阔的优化天地 为了深入理解OSQP在Apollo路径规划中的应用,掌握正定和半正定矩阵的特性至关重要。查阅OSQP官网和GitHub文档,同时参考知乎、CSDN博客和Apollo开发者社区的专业资源,将帮助你更好地理解和利用OSQP的强大功能。 在自动驾驶的征途上,每一步优化都关乎安全与效率。OSQP与PJP的结合,正在推动智能车辆在复杂道路上的稳健前行。