【jdbc 源码解析】【视频源码播放器】【javase在线考试系统源码】图像分类 源码

来源:金水短视频小程序源码

1.swin transformer理解要点
2.Python程序开发系列一文搞懂argparse模块的图像常见用法(案例+源码)
3.10分钟!用Python实现简单的分类人脸识别技术(附源码)
4.使用PaddleClas(2.5)进行分类
5.(三十八)通俗易懂理解——MXNet如何生成.lst文件和.rec文件
6.轻松理解ViT(Vision Transformer)原理及源码

图像分类 源码

swin transformer理解要点

        这是跑通的分类以及分割源码介绍,大家有需要可以参考一下:

        1、 Swin-Transformer分类源码(已跑通)

        2、 Swin-Transformer分割源码(已跑通)

        3、 Swin-Unet(分割改编)

        我们假设图片的大小是×的,窗口大小是固定的,7×7。这里每个方框都是一个窗口,每个窗口是固定有7×7个patch,但是patch的大小是不固定的,它会随着patch merging的操作而发生变化。比如我们看这儿,patch大小是4×4的,那怎么变成8×8呢?我们把周边4个窗口的patch拼在一起,相当于patch扩大了2×2倍,从而得到8×8大小的patch。

        我们发现经过这一系列的操作之后,patch的数目在变少,最后整张图只有一个窗口,7个patch。所以我们可以认为降采样是指让patch的数量减少,但是patch的大小在变大。

        这便是对ViT的一个改进,ViT从头至尾都是对全局做self-attention,而swin-transformer是一个窗口在放大的过程,然后self-attention的计算是以窗口为单位去计算的,这样相当于引入了局部聚合的信息,和CNN的卷积过程很相似,就像是CNN的步长和卷积核大小一样,这样就做到了窗口的不重合,区别在于CNN在每个窗口做的是卷积的计算,每个窗口最后得到一个值,这个值代表着这个窗口的特征。而swin transformer在每个窗口做的是self-attention的计算,得到的是一个更新过的窗口,然后通过patch merging的操作,把窗口做了个合并,再继续对这个合并后的窗口做self-attention的计算。

        其实这边困扰了我一小下,因为我们印象中降采样都是像CNN一样,会变小,但是swin transformer没有给我们变小的感觉。其实这就是感受野没理解到位的问题,CNN到最后,设计适当,最后一个特征图的感受野是可以放大到整张图的,swin transformer最后一个stage也是一个窗口涵盖了整张图。

        Swin-transformer是怎么把复杂度降低的呢? Swin Transformer Block这个模块和普通的transformer的区别就在于W-MSA,而它就是降低复杂度计算的大功臣。

        关于复杂度的计算,我简单的给大家介绍一下,首先是transformer本身基于全局的复杂度计算,这一块儿讲起来有点复杂,感兴趣的同学我们可以会后一起探讨推导过程。在这里,我们假设已知MSA的复杂度是图像大小的平方,根据MSA的复杂度,我们可以得出A的复杂度是(3×3)²ï¼Œæœ€åŽå¤æ‚度是。Swin transformer是在每个local windows(红色部分)计算self-attention,根据MSA的复杂度我们可以得出每个红色窗口的复杂度是1×1的平方,也就是1的四次方。然后9个窗口,这些窗口的复杂度加和,最后B的复杂度为9。

        W-MSA虽然降低了计算复杂度,但是不重合的window之间缺乏信息交流,所以想要窗口之间的信息有所交流,那么就可以把左图演化成右图这样,但是这就产生了一个问题,如此操作,会产生更多的windows,并且其中一部分window小于普通的window,比如4个window -> 9个window,windows数量增加了一倍多。这计算量又上来了。因此我们有两个目的,Windows数量不能多,window之间信息得有交流。

        我们看到,原来的图被划分了9个窗口,中间的区域A就是信息交流的证明。我们先把左上部分(蓝色以外的窗口)移动到右下,然后再用切分四块的方法去切这个图片,这时候区域A就被隔出来了,达到了我们想要的效果。

        transformer的出现并不是为了替代CNN。因为transformer有着CNN没有的功能性,它不仅可以提取特征,还可以做很多CNN做不到的事情,比如多模态融合。而swin transformer就是一个趋势,将CNN与transformer各自的优势有效的结合了起来。这是暂时对它的一些细节补充。最近听说MLP出来了,还没有细看,时代进展未免也太快了,手里针对ViT改进的文章还没投出去,就已经开始要立不住脚了。

        希望可以帮助到大家,如果你觉得这篇文章对你有一定的帮助,那就点个赞支持一下吧!如果有什么问题的话也可以在文章下面评论,我们一起交流解决问题!

        以下是我所有文章的目录,大家如果感兴趣,也可以前往查看

        👉戳右边: 打开它,也许会看到很多对你有帮助的文章

Python程序开发系列一文搞懂argparse模块的常见用法(案例+源码)

       argparse是Python标准库中的一个模块,用于解析命令行参数。源码它允许开发者定义命令行参数和选项,图像包括参数类型、分类默认值、源码jdbc 源码解析帮助信息等。图像解析后的分类参数可以用于执行特定任务。在机器学习和深度学习项目中,源码argparse尤其有用,图像可灵活配置程序参数,分类简化用户操作。源码

       创建一个ArgumentParser对象并提供描述性字符串,图像之后可以添加位置参数和可选参数。分类位置参数的源码顺序对结果有影响,而可选参数则通过关键词传递,更易于使用。解析命令行输入后,将结果存储在变量中,用于执行特定任务。

       例如,有一个名为.py的Python脚本,通过argparse可以添加参数,如一个位置参数"name"和一个可选参数"age",并解析命令行输入,从而执行特定任务。

       在实际应用中,视频源码播放器将创建ArgumentParser对象、添加参数、解析参数过程封装在函数中,任务操作写在另一个函数中,以提高代码的复用性和可维护性。

       argparse在机器学习和深度学习项目中的应用包括设置模型超参数、选择数据集和数据预处理选项、选择模型架构和损失函数、控制训练和评估过程等。通过命令行参数,用户可以灵活配置模型训练过程,而无需修改源代码。

       以一个图像分类器为例,使用卷积神经网络进行训练和预测,可以通过命令行指定数据集路径、模型超参数和训练配置等参数。这使得用户可以在不修改源代码的情况下,通过命令行灵活配置图像分类器的训练过程。

       综上所述,argparse模块简化了Python程序的命令行参数解析,使其在机器学习和深度学习项目中能够灵活配置参数,提高了程序的易用性和可扩展性。

分钟!用Python实现简单的人脸识别技术(附源码)

       Python实现简单的人脸识别技术,主要依赖于Python语言的胶水特性,通过调用特定的javase在线考试系统源码库包即可实现。这里介绍的是一种较为准确的实现方法。实现步骤包括准备分类器、引入相关包、创建模型、以及最后的人脸识别过程。首先,需确保正确区分人脸的分类器可用,可以使用预训练的模型以提高准确度。所用的包主要包括:CV2(OpenCV)用于图像识别与摄像头调用,os用于文件操作,numpy进行数学运算,PIL用于图像处理。

       为了实现人脸识别,需要执行代码以加载并使用分类器。执行“face_detector = cv2.CascadeClassifier(r'C:\Users\admin\Desktop\python\data\haarcascade_frontalface_default.xml')”时,确保目录名中无中文字符,以免引发错误。这样,程序就可以识别出目标对象。

       然后,选择合适的算法建立模型。本次使用的是OpenCV内置的FaceRecognizer类,包含三种人脸识别算法:eigenface、fisherface和LBPHFaceRecognizer。LBPH是一种纹理特征提取方式,可以反映出图像局部的-37源码补码反码转纹理信息。

       创建一个Python文件(如trainner.py),用于编写数据集生成脚本,并在同目录下创建一个文件夹(如trainner)存放训练后的识别器。这一步让计算机识别出独特的人脸。

       接下来是识别阶段。通过检测、校验和输出实现识别过程,将此整合到一个统一的文件中。现在,程序可以识别并确认目标对象。

       通过其他组合,如集成检测与开机检测等功能,可以进一步扩展应用范围。实现这一过程后,你将掌握Python简单人脸识别技术。

       若遇到问题,首先确保使用Python 2.7版本,并通过pip安装numpy和对应版本的opencv。针对特定错误(如“module 'object' has no attribute 'face'”),使用pip install opencv-contrib-python解决。如有疑问或遇到其他问题,请随时联系博主获取帮助。

使用PaddleClas(2.5)进行分类

       在进行图像分类任务时,我选择使用PPLCNetV2_base模型。首先,确保已安装CUDA和CUDNN,QQ钓key php源码这在分类过程中至关重要。我尝试安装CUDA.7.0,但遇到问题,预测结果不理想。实际上,使用CPU同样能实现分类,无需过度依赖GPU。若出现预测准确率低的问题,考虑卸载并重新安装,或寻找其他版本的CUDA和CUDNN。

       安装CUDA和CUDNN的官方资源提供了必要的版本选择。我选择CUDA.7.0,并通过自定义安装方式排除不必要的组件。同时,确保解压cuDNN的压缩包至CUDA安装路径C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v.7下,以完成环境配置。

       使用pip安装paddlepaddle-gpu==2.4.2,并从PaddlePaddle/PaddleClas仓库下载源码,以获取适用于图像分类的工具。为确保依赖项最新,执行pip install --upgrade -r requirements.txt命令。随后,运行PaddleClas模型并观察结果。

       为了将模型导出为ONNX格式,可以使用Paddle2ONNX模块,获取详细教程和案例有助于理解操作流程。此步骤有助于模型在其他平台或框架中实现推理。通过ONNXruntime进行推理,观察实际表现。注意,图像处理方式可能影响概率输出,我遇到的情况是因为转换方法不够精细,导致概率值有所不同。

       总结而言,使用PPLCNetV2_base模型进行分类时,正确安装CUDA和CUDNN、配置环境变量是关键。尽管遇到GPU运行问题,考虑使用CPU作为替代方案。通过ONNX格式转换与ONNXruntime的结合,可以实现跨平台的推理任务。若遇到特定问题,寻找兼容CUDA和CUDNN的版本或寻求社区支持将有助于解决问题。

(三十八)通俗易懂理解——MXNet如何生成.lst文件和.rec文件

       在MXNet中进行图像项目的处理时,图像读取方法有两路:一是通过.rec格式,虽然文件稳定可移植,但文件较大占用空间;二是利用.lst文件与图像结合,lst文件记录路径和标签,便于数据管理,但对图像格式要求高,且对文件路径的完整性敏感。对于分类和目标检测,流程略有差异。

       首先,从文件结构开始,需在根目录下建立文件夹,如im2rec源码、空的mxrec存放打包文件,以及hot_dog、not_hot_dog等子文件夹。针对分类任务,执行im2rec.py工具,通过参数如`--list`生成lst文件,`--recursive`遍历子目录,`--train_ratio`设置训练与测试的比例,以及指定文件前缀和文件夹路径。打包完成后,就生成了lst和相应的rec、idx文件。

       目标检测略有不同,不能直接使用im2rec,如VOC数据集,其xml文件包含了的标注信息。制作lst文件时,需要从xml中提取锚框坐标、id、名称和尺寸等信息,以'\t'分隔。然后,遵循分类的打包流程,将这些信息与图像一起打包成rec文件。

       总结来说,MXNet通过lst和rec文件的配合,提供了灵活和稳定的数据管理方式,但需要注意文件格式的兼容性和路径完整性,具体操作根据任务类型(分类或目标检测)进行适当的调整。

轻松理解ViT(Vision Transformer)原理及源码

       ViT,即Vision Transformer,是将Transformer架构引入视觉任务的创新。源于NLP领域的Transformer,ViT在图像识别任务中展现出卓越性能。理解ViT的原理和代码实现在此关键点上进行。

       ViT的核心流程包括图像分割为小块、块向量化、多层Transformer编码。图像被分为大小为x的块,块通过卷积和展平操作转换为向量,最终拼接形成序列。序列通过多层Transformer编码器处理,编码器包含多头自注意力机制和全连接前馈网络,实现特征提取和分类。模型输出即为分类结果。

       具体实现上,Patch Embedding过程通过卷积和展平简化,将大小为x的图像转换为x的向量序列。Transformer Encoder模块包括Attention类实现注意力机制,以及Mlp类处理非线性变换。Block类整合了这两个模块,实现完整的编码过程。

       VisionTransformer整体架构基于上述模块构建,流程与架构图保持一致。代码实现包括关键部分的细节,完整代码可参考相关资源。

       综上所述,ViT通过将图像分割与Transformer架构相结合,实现高效图像识别。理解其原理和代码,有助于深入掌握这一创新技术。

必知必会的VGG网络(含代码)

       牛津大学的视觉几何组设计的VGGNet,一种经典卷积神经网络架构,曾在年ILSVRC分类任务中获得第二名。现今,VGG依然广泛应用于图像识别、语音识别、机器翻译、机器人等领域。VGG包含层(VGG-)和层(VGG-),结构相似,由个卷积层和3个全连接层组成。与之前网络相比,VGG采用3*3卷积核替代7x7卷积核,2*3卷积核替代5*5卷积核,以减少参数,提升深度。

       VGG-的结构图显示,包含conv(卷积层)、pool(池化层)和最后三个fc(全连接层)。VGG通过减少参数量,使得网络结构更加紧凑,从而提升模型的性能。

       VGG-采用五组卷积与三个全连接层,最后使用Softmax进行分类。每个卷积层的参数量通过公式计算得出。特征图计算公式为输出图像大小(O)等于(输入图像大小(I)+2*填充(P)-卷积核大小(K))/步长(S)+1。

       VGG-的代码实现可以通过构建一个Layer类,通过循环添加每个层的顺序执行来实现。具体代码可在关注公众号CV算法恩仇录后,回复VGG源码获取。

       了解更多关于VGG的细节,请参阅相关链接:《VGG网络细节》 shimo.im/docs/dPkpKKErv...、《VGG网络》 blog.csdn.net/weixin_...

       深入理解VGG,可参考《一文读懂VGG》/s/vWuGW4iMD1MjVDZVCqH_FA。

文章所属分类:探索频道,点击进入>>