皮皮网

【红柱子背离源码】【php 网站 模版 源码】【叮当计步源码】list系列源码_list 源码

2024-12-29 02:16:41 来源:课程预约 php源码

1.深入理解 Python 虚拟机:列表(list)的系列实现原理及源码剖析
2.关于 List 的线程不安全
3.线程安全的list之synchronizedList和CopyOnWriteArrayList
4.[stl 源码分析] std::list::size 时间复杂度
5.《面试1v1》List
6.STL容器—list使用技巧

list系列源码_list 源码

深入理解 Python 虚拟机:列表(list)的实现原理及源码剖析

       深入理解 Python 虚拟机:列表(list)的实现原理及源码剖析

       在 Python 虚拟机中,列表作为基本数据类型之一,源码源码能够存储各种类型的系列数据并支持多种操作。本文将详细解析列表在 cpython 实现中的源码源码结构和关键操作的源代码。

       列表结构解析

       在 cpython 实现中,系列列表由一系列元素构成,源码源码红柱子背离源码每个元素由一个指针指向 Python 对象。系列列表还包含一个表示元素数量的源码源码字段,一个用于存储列表长度的系列字段,以及一个用于存储对象引用计数的源码源码字段。

       创建和扩容机制

       创建列表时,系列不会直接分配内存,源码源码而是系列将需要释放的内存地址保存在数组中,以便下次创建列表时复用。源码源码列表扩容时,系列通过检查当前容量并相应地增加,以适应新添加的元素。

       插入和删除操作

       插入元素时,将插入位置及其后元素后移一位。删除元素时,将后续元素前移,直至空位。

       复制操作

       列表复制分为浅拷贝和深拷贝。浅拷贝仅复制对象的指针,改变原始列表中的元素会影响复制后的列表。深拷贝则复制对象及其内部内容,确保复制后的列表独立于原始列表。

       列表清理和反转

       清空列表时,将元素数量字段设置为零,php 网站 模版 源码并减少所有对象的引用计数,以便在计数为零时自动释放内存。反转列表使用交换元素指针实现,不改变元素值。

       总结

       本文深入介绍了 Python 列表的内部实现,包括创建、扩容、插入、删除、复制、清理和反转等操作的源代码。理解这些细节有助于更高效地编写 Python 代码并深入掌握 Python 的内部机制。

关于 List 的线程不安全

       讨论 List 数据结构在多线程环境下的安全性问题。首先,答案是否定的,因为 List 类在 Java 中并未提供线程安全的实现,以牺牲一致性保证了效率。以 ArrayList 为例,其核心方法 add(E e) 未加锁,如源码所示:

       public boolean add(E e) { ensureCapacityInternal(size + 1); // Increments modCount!! elementData[size++] = e; return true; }

       为提升性能和并发性,未对并发操作进行同步处理,从而可能导致并发修改异常(ConcurrentModificationException)。通过在模拟代码中执行并发添加操作即可复现该异常。

       针对此问题,有以下几种解决策略:

       1. **使用 Vector**:Vector 类提供了线程安全的 add 方法,通过 synchronized 关键字对方法进行同步,确保并发安全。但其性能表现低于无锁的叮当计步源码实现,特别是在高并发场景下。

       2. **利用 Collections.synchronizedList()**:此方法通过将非线程安全的 List 实例包装为同步的 List 实例,提供了一个简单的解决方式。通过以下代码即可实现:

       java

       List list = Collections.synchronizedList(new ArrayList());

       3. **采用 CopyOnWriteArrayList**:此类在添加元素时不会修改原有数据结构,而是在添加后创建新的数据结构副本。核心源码揭示了这一实现机制,具体为使用 ReentrantLock 上锁,复制现有数组,添加元素至新数组,并最终释放锁。

       综上所述,解决 List 类线程不安全问题的常见策略包括使用 Vector、Collections.synchronizedList() 方法或 CopyOnWriteArrayList 类。每种方法都有其适用场景和性能考量,开发者应根据具体需求选择合适的解决方案。

线程安全的list之synchronizedList和CopyOnWriteArrayList

        在上篇文章中我们已经介绍了其他的一些list集合,如ArrayList、linkedlist等。不清楚的可以看下上篇文章 /p/ab5bf7

        但是向ArrayList这些会出现线程不安全的问题,我们该怎样解决呢?接下来就是要介绍我们线程安全的list集合synchronizedList和CopyOnWriteArrayList。

        synchronizedList的使用方式:

        从上面的使用方式中我们可以看出,synchronizedList是将List集合作为参数来创建的synchronizedList集合。

        synchronizedList为什么是线程安全的呢?

        我们先来看一下他的源码:

        我们大概贴了一些常用方法的源码,从上面的源码中我们可以看出,其实synchronizedList线程安全的原因是因为它几乎在每个方法中都使用了synchronized同步锁。

        synchronizedList官方文档中给出的使用方式是以下方式:

        在以上源码中我们可以看出,官方文档是建议我们在遍历的时候加锁处理的。但是既然内部方法以及加了锁,为什么在遍历的时候还需要加锁呢?我们来看一下它的遍历方法:

        从以上源码可以看出,虽然内部方法中大部分都已经加了锁,但是iterator方法却没有加锁处理。那么如果我们在遍历的时候不加锁会导致什么问题呢?

        试想我们在遍历的时候,不加锁的情况下,如果此时有其他线程对此集合进行add或者remove操作,那么这个时候就会导致数据丢失或者是脏数据的问题,所以如果我们对数据的要求较高,想要避免这方面问题的话,在遍历的时候也需要加锁进行处理。

        但是既然是使用synchronized加锁进行处理的,那肯定避免不了一些锁开销。有没有效率更好的方式呢?那就是我们另一个主要的并发集合CopyOnWriteArrayList。

        CopyOnWriteArrayList是在执行修改操作时,copy一份新的数组进行相关的操作,在执行完修改操作后将原来集合指向新的集合来完成修改操作。具体源码如下:

        从以上源码我们可以看出,它在执行add方法和remove方法的时候,分别创建了一个当前数组长度+1和-1的数组,将数据copy到新数组中,然后执行修改操作。修改完之后调用setArray方法来指向新的数组。在整个过程中是使用ReentrantLock可重入锁来保证不会有多个线程同时copy一个新的数组,从而造成的混乱。并且使用volatile修饰数组来保证修改后的可见性。读写操作互不影响,所以在整个过程中整个效率是非常高的。

        synchronizedList适合对数据要求较高的情况,但是因为读写全都加锁,所有效率较低。

        CopyOnWriteArrayList效率较高,适合读多写少的场景,因为在读的时候读的是旧集合,所以它的实时性不高。

[stl 源码分析] std::list::size 时间复杂度

       在对Linux上C++项目进行性能压测时,一个意外的发现是std::list::size方法的时间复杂度并非预期的高效。原来,这个接口在较低版本的g++(如4.8.2)中是通过循环遍历整个列表来计算大小的,这导致了明显的性能瓶颈。@NagiS的提示揭示了这个问题可能与g++版本有关。

       在功能测试阶段,CPU负载始终居高不下,通过火焰图分析,std::list::size的调用占据了大部分执行时间。火焰图的使用帮助我们深入了解了这一问题。

       查阅相关测试源码(源自cplusplus.com),在较低版本的溯源码燕窝羹g++中,std::list通过逐个节点遍历来获取列表长度,这种操作无疑增加了时间复杂度。然而,对于更新的g++版本(如9),如_glibcxx_USE_CXX_ABI宏启用后,list的实现进行了优化。它不再依赖遍历,而是利用成员变量_M_size直接存储列表大小,从而将获取大小的时间复杂度提升到了[公式],显著提高了性能。具体实现细节可在github上找到,如在/usr/include/c++/9/bits/目录下的代码。

《面试1v1》List

       面试官:小伙子,听说你对Java集合挺在行的?

       候选人:谢谢夸奖,我对Java集合还在学习中,只能算入门水平。特别是List这个接口,其下的实现类功能非常丰富,我还未能全部掌握。

       面试官:那么,简单介绍下List这个接口及常用实现类吧!这是Java集合的基础,也是日常开发中最常用的。

       候选人:List接口表示一个有序集合,它的主要实现类有ArrayList、LinkedList、Vector等。它们都实现了List接口,有一些共同的方法,但底层数据结构不同,所以在不同场景有不同的使用优势。这取决于应用的需求。

       面试官:那日常工作用的最多的是哪个实现类?它的源码能不能讲解一下?

       候选人:我日常工作中最常用的List实现类就是ArrayList。它的源码如下:

       ArrayList底层采用动态数组实现,通过ensureCapacityInternal()方法动态扩容,以达到在保证查询效率的同时,尽量减小扩容带来的性能消耗。这也是我在日常使用中最欣赏ArrayList的地方。当然,它的实现远不止这些,我还在不断学习与理解中。

       面试官:不错,你对这些知识已经有一定理解。ArrayList的源码分析得也比较到位。看来你之前真的有认真研读与理解。不过List相关知识还有更广阔的黎明地图资源码空间,需要你继续努力!

       候选人:非常感谢面试官的肯定与指导。您说得对,List及其相关知识还有很多值得我继续学习与探索的地方。我会持续加深理解,提高运用能力。

       面试官:那么,你对List还有哪些不太理解的地方?或是想更深入学习的内容?

       候选人:关于List,我还不太清楚或想进一步学习的内容如下:

       这些都是我想进一步学习与理解的List相关内容与知识点。我会根据这份清单继续深入阅读源码、分析案例并实践使用,以便全面掌握List及其相关接口与实现类。这无疑需要一段长期的学习与总结过程,但这正是我成长为一名资深Java工程师所必须经历的阶段。

       面试官:Wonderful!这份学习清单涵盖的内容非常全面且具有针对性。你能够准确定位自己尚未完全掌握的知识点,这展现出你的自我认知能力。只要你能够有计划和耐心地向这个清单上的每一项知识点进发,你在List及相关接口的理解上一定会有大的提高,这也为你成长为资深工程师奠定基础。我对你的学习态度和理解能力很为欣赏。

       最近我在更新《面试1v1》系列文章,主要以场景化的方式,讲解我们在面试中遇到的问题,致力于让每一位工程师拿到自己心仪的offer。如果您对这个系列感兴趣,可以关注公众号JavaPub追更!

       《面试1v1》系列文章涵盖了Java基础、锁、数据结构与算法、Mybatis、搜索LuceneElasticsearch、Spring、Spring Boot、中间件、zookeeper、RocketMQ、Prometheus、流程引擎、Redis、Docker、sql、设计模式、分布式、shell等主题。您可以在Gitee或GitHub上找到更多资源。如果您需要PDF版的干货,可以访问指定链接进行下载。希望这些资源能帮助您更好地准备面试,实现职业目标!

STL容器—list使用技巧

       列表容器(list)在STL中是一种序列容器,特点是非连续内存分配。对比vector,其查找操作通常较慢,但插入和删除操作速度较快。列表通常实现为双向链表,这为实现单链表提供了便利。通过双向链接,可在常数时间内进行插入和删除操作,但查找操作需遍历整个列表,时间复杂度为O(n)。

       查看上图,可了解std::list在内存中的布局,列表中的元素通过双向链接结点存储,每个结点包含数据和指向前后结点的指针。

       列表的查找操作耗时,一旦找到元素,后续操作如更新、插入或删除则为常数时间复杂度。从性能角度看,list并不总是最佳选择,但在某些场景下仍具有优势。

       以下代码展示了如何使用list进行内存分配测试,结果显示list的内存分配与vector不同,不会在插入元素时进行内存重新分配和数据拷贝。

       清理list内存通常较为复杂。std::list自身并未提供内存释放接口,且标准库不保证立即释放内存。只有vector和string容器支持类似std::vector的swap函数,以在清理内存时立即释放空间。例如,chromium.org源代码中的stl_util.h文件中的清理代码仅适用于vector和string。

       尽管在多数情况下std::list似乎并不突出,它在某些特定场景中仍具有用武之地。例如,当需要频繁插入和删除元素,而访问元素的顺序不固定时,list可能是更优选择。此外,当处理大量数据且内存使用效率是关键因素时,list的特性也能带来优势。因此,在权衡效率和特定需求后,list仍值得在编程实践中考虑。

C#浅析C# List实现原理

       C# List 实现原理详解

       在面试中,我被问到List的初始化容量问题,暴露了自己在C#编程中的不足。List作为C#中最常见的可伸缩数组组件,常用于替代数组,其可扩展性避免了手动分配数组大小的麻烦,甚至有时作为链表使用。那么,它底层的工作机制如何呢?我们来深入了解其添加、插入、删除、索引操作以及排序等方面的实现。

       Add操作

       在添加元素前,List会调用EnsureCapacity确保有足够的空间,如果容量不够,会按需扩容,初始容量为4,每次扩张都是翻倍:4, 8, , ...。然而,List使用数组作为底层数据结构,虽然索引访问快,扩容时会产生新的数组,造成内存浪费和GC压力。

       Insert操作

       插入操作涉及Array.Copy,将指定索引后的元素后移,时间复杂度为O(n)。这可能导致性能降低和内存冗余。

       Remove操作

       删除元素时,同样通过Array.Copy将指定索引后的元素前移,O(n)复杂度。删除元素后,后续元素需要移动,增加了内存消耗和GC负担。

       索引访问与Find

       直接使用数组下标访问速度快,但Find的线性查找可能导致O(n)效率。在Unity中,foreach可能导致额外的GC,尽管Unity5.5已解决这个问题,但仍需注意foreach可能增加垃圾对象。

       Clear操作

       Clear并不会删除数组,仅清零元素并设_size为0,表示容量为0,避免内存浪费。

       foreach与Sort

       foreach在Unity中可能增加额外GC,但已在新版本中解决。List的Sort使用快速排序,时间复杂度为O(nlogn)。

       总结与参考

       深入理解List的实现原理,对提高C#编程效率至关重要。参考《Unity3D高级编程之进阶主程》第一章和List源码(list.cs),以优化代码和避免不必要的性能损失。

golang源码系列---手把手带你看list实现

       本文提供Golang源码中双向链表实现的详细解析。

       双向链表结构包含头节点对象root和链表长度,无需遍历获取长度,链表节点额外设指针指向链表,方便信息获取。

       创建双向链表使用`list.New`函数,初始化链表。

       `Init`方法可初始化或清空链表,链表结构内含占位头结点。

       `Len`方法返回链表长度,由结构体字段存储,无需遍历。

       `Front`与`Back`分别获取头结点和尾结点。

       `InsertBefore`与`InsertAfter`方法在指定节点前后插入新节点,底层调用`insertValue`实现。

       `PushFront`与`PushBack`方法分别在链表头部和尾部插入新节点。

       `MoveToBack`与`MoveToFront`内部调用`move`方法,将节点移动至特定位置。

       `MoveBefore`与`MoveAfter`将节点移动至指定节点前后。

       `PushBackList`与`PushFrontList`方法分别在链表尾部或头部插入其他链表节点。

       例如,原始链表A1 - A2 - A3与链表B1 - B2 - B3,`PushFrontList`结果为B1 - B2 - B3 - A1 - A2 - A3,`PushBackList`结果为A1 - A2 - A3 - B1 - B2 - B3。