欢迎来到皮皮网网站!

【涨停对称指标源码】【网页源码自动发货】【上传图文网站源码】reactor 源码

时间:2025-01-04 08:32:56 来源:k线变色源码

1.如何评价 muduo 的架构和概念?
2.Reactive Spring实战 -- 理解Reactor的设计与实现
3.响应式编程入门之 Project Reactor
4.Pistache源码分析 —— Transport类
5.FREE SOLO - 自己动手实现Raft - 10 - libuv源码分析与调试-1
6.代码保护软件.NET Reactor 是什么

reactor 源码

如何评价 muduo 的架构和概念?

       深入解析:muduo架构的魅力与实践

       在C++编程领域,陈硕的开源库muduo凭借其优雅的Reactor模式和高效的设计赢得了开发者们的青睐。《Linux多线程服务器端编程》中详尽介绍了muduo的精髓,作为学习的基石,它为理解底层网络编程提供了清晰的指导。本文将带你从源码层面探索muduo,涨停对称指标源码通过实例剖析,揭示其架构的奥秘。

       muduo的核心在于其职责分明的类结构,它的设计理念影响了诸如evpp等后续库的构建。Reactor模式的核心在于事件循环监听,muduo巧妙地运用了EventLoop和Poller(epoll/poll)技术。其典型架构包括Acceptor,它负责接纳新连接,如同Redis和Netty的基石。

       以经典的echo server为例,muduo的流程井然有序:首先,创建一个EventLoop和TcpServer,接着设置回调函数。启动后,EventLoop进入循环,处理连接的建立过程,包括socket的创建、绑定、监听和通过accept方法接纳新连接。连接一旦建立,就需要处理读写事件,如数据接收和发送。

       在muduo中,连接的建立始于TcpServer构建阶段,通过Acceptor的socket和bind操作。当server启动时,它会在监听socket上执行listen操作,并将可读事件注册到EventLoop上。当有新的连接请求时,EventLoop会调用Acceptor的handleRead函数:

       通过accept方法创建新的连接,并获取连接描述符(fd)。

       然后,创建TcpConnection对象,并将其注册到EventLoop中,同时使用shared_ptr在TcpServer的connections列表中保存。

       当客户端开始发送数据,新连接的可读事件会被触发,这时TcpConnection的handleRead方法会被调用。

       在handleRead中,数据被读取到inputbuffer,接着会调用messageCallback来执行业务逻辑,如解码和数据分发。值得注意的是,为了保证线程安全,网页源码自动发货非IO线程操作Buffer可能需要在IO线程中处理,避免并发问题。

       用户通过TcpConnection::send方法发送数据,这个操作在IO线程中执行,确保了线程安全,如通过sendInLoop或runInLoop异步处理。sendInLoop执行一系列操作,如检查输出缓冲区状态、注册写事件、以及处理完成回调,有效管理数据流。

       当连接意外断开时,muduo通过TcpConnection的handleRead检测到read操作返回0,然后进行一系列清理操作,包括移除事件、调用用户提供的ConnectionCallback、从服务器中移除连接,并在析构函数中关闭fd。

       muduo支持单线程和主从Reactor模式,主Reactor负责新连接,子Reactor处理连接,有效分散EventLoop的负载。EventLoop的单线或多线取决于子Reactor的配置,主EventLoop通常共享,而子EventLoop则是独立的。muduo还提供了线程池来处理阻塞任务,如网络I/O操作。

       深入研究muduo的源码,你将发现其在封装底层网络操作和设计业务接口方面的实践,对理解网络编程和项目设计有着不可小觑的价值。它不仅是一个学习的宝库,也是封装与设计技巧的鲜活示例。所以,如果你正在寻找一个易于理解、功能强大的网络编程框架,muduo无疑是值得投入时间和精力的优秀选择。

Reactive Spring实战 -- 理解Reactor的设计与实现

       Reactor是Spring提供的非阻塞式响应式编程框架,实现了Reactive Streams规范。它提供了可组合的异步序列API,包括用于多个元素的Flux和用于零到一个元素的Mono。

       Reactor Netty项目还支持非阻塞式网络通信,非常适合微服务架构,为HTTP(包括Websockets),TCP和UDP提供了响应式编程基础。本文将通过实例展示和源码阅读,深入分析Reactor的核心设计与实现机制。

       Reactor源码基于版本3.3。

       响应式编程是一个专注于数据流和变化传递的异步编程范式,允许使用编程语言表示静态或动态数据流。上传图文网站源码

       Reactor中,发布者(Publisher)负责生产数据,订阅者(Subscriber)负责处理和消费数据。创建发布者和订阅者后,通过建立订阅关系,发布者开始生产数据并传递给订阅者。

       Flux和Mono是两种发布者类型,分别用于生产多个数据元素和单个数据元素。例如,Flux.range和fromArray等静态方法会返回Flux子类。

       Reactor中关键方法包括Publisher#subscribe和Flux#subscribe。订阅者在onSubscribe方法中接收订阅关系,然后通过Subscription#request方法向发布者请求数据。

       RangeSubscription#request、Subscriber#onNext和CoreSubscriber的内部逻辑展示了数据流转的过程。Flux子类的subscribe方法创建Subscription,将操作符逻辑转移到Subscriber端。

       操作符方法,如skip、distinct、sort和filter,是Reactor的核心,用于处理和组合数据流。例如,myHandler作为订阅者,可以处理生成的Flux子类序列。

       Reactor支持push和pull模式。pull模式通过Flux#generate和Sink缓存数据,而push模式则通过Flux#create,允许多线程同时推送数据。

       Reactor提供线程与调度器支持,例如parallel、single、boundedElastic和parallel。这些调度器允许在不同线程环境下执行操作。

       Reactor中的publishOn和subscribeOn操作符方法用于切换操作上下文,分别影响后续操作和整个链路的线程执行环境。

       流量控制是响应式编程中的重要概念,FluxSink.OverflowStrategy定义了在数据生产速度超过消费速度时的策略,如忽略、错误或缓存数据。

       Reactor通过实例和源码展示了响应式编程的概念和实现机制,以及如何在实际应用中使用。通过WebFlux和AsyncRestTemplate的比较,将揭示响应式编程带来的优势。

响应式编程入门之 Project Reactor

       本文旨在为读者提供对响应式编程及其核心库——Reactor的入门理解。在介绍前,我们先回顾一下非阻塞IO编程的基础,理解为何在Spring MVC中引入了WebFlux以及Reactor。装修计算软件源码Reactor是基于Java 8函数式API,集成CompletableFuture、Stream和Duration,它提供了Flux和Mono等异步序列API,并实现了Reactive Streams规范,特别适合构建微服务架构中的响应式系统。

       在非阻塞IO编程中,比如调用远程服务时,我们通常通过回调函数来处理数据可用情况。然而,当回调逻辑复杂时,代码往往难以阅读。响应式编程通过简化这种逻辑,提供了更简洁的实现方式。它将传统命令式编程抽象为一系列API,更适合非阻塞IO环境。尽管响应式编程在非阻塞IO框架中广泛应用,如Vertx和WebFlux,但这并不意味着非阻塞IO编程只能依赖响应式编程。

       Reactor作为响应式编程的基础,实现了Java响应式编程规范,理解其内部工作原理有助于深入掌握其API。Reactor的核心接口展示了其运作机制,包括数据发布和订阅流程。在实际应用中,Publisher和Subscription共同作用,通过调用Subscriber的onNext、onComplete和onError方法来实现数据流转。

       响应式编程思想可类比为一条流水线,Publisher定义了数据生产过程,Operators对数据进行解析、校验和转换等操作,最终流转到Subscriber。这种设计使得系统在未被订阅之前保持静默,直至实际使用时才启动。

       Reactor中的Operator作为连接上下游的关键组件,实现了数据的转换和处理。例如,map操作符通过改变数据值来实现数据转换。实际实现虽然复杂且严谨,但遵循了相同的设计理念。

       学习Reactor的关键在于理解核心接口以及实践API。首先理解响应式编程的基本概念和Reactor如何实现这些概念。接下来,深入阅读官方文档并进行代码实践。追踪源码时,关注subscribe方法和Subscription的作用,以及Subscriber中的onNext、onComplete和onError方法的xs源码怎么使用实现。

       总之,通过本文的学习,读者应能对响应式编程和Reactor有初步的了解,并掌握学习Reactor的方法和途径。尽管本文未详细探讨Reactor的每个细节,但它为深入探索提供了基础。欢迎读者通过实践和阅读源码进一步深入理解这一强大且灵活的编程范式。

Pistache源码分析 —— Transport类

       Transport类是Reactor架构中的关键组件,它为worker线程提供了一系列接口,负责处理核心功能,如等待HTTP请求并调用用户自定义的Handler。简单来说,如果Handler对应HTTP协议,那么Transport相当于TCP协议,这是其名称的由来。

       Transport类继承自Aio::Handler类,该基类定义了两个虚函数。Transport类内部还包含了一系列成员变量和成员函数,共同构成其功能。

       成员变量包括:PollableQueue、处理新连接、处理HTTP请求、异步写机制、线程资源统计、定时机制和断开连接等。

       Aio::Handler类主要定义了两个虚函数,具体功能与Transport类的成员函数相对应,如处理新连接、处理HTTP请求、异步写机制等。

       处理新连接:这部分功能在初始化和请求处理阶段实现,具体操作可参考源码分析文章。

       处理HTTP请求:处理请求是核心功能,文章中详细描述了这一过程,包括请求处理的具体实现。

       异步写机制:这部分功能通过rusage和timerfd机制实现,可参考相关Linux手册了解具体实现。

       线程资源统计:这部分功能用于统计线程资源,确保程序高效运行。

       定时机制:通过timerfd_create(2)和getrusage(2)实现定时任务,这部分功能需要深入理解Linux相关手册。

       断开连接:提供了断开连接的功能,确保连接资源的合理管理。

       重载父类:实现父类的重载,扩展或修改基类的功能。

       其他:Transport类还包含了其他功能,这些功能可能涉及数据处理、状态管理等,具体细节需查阅源代码。

FREE SOLO - 自己动手实现Raft - - libuv源码分析与调试-1

       了解EventLoop这一核心概念,就是“Reactor模型”的主体框架。Reactor模型是一种程序设计模式,其本质在于如何对外界各种刺激做出反应,利用单一或者多个线程,处理各类外部事件,如网络数据包接收、定时器超时等,根据不同事件注册相应的回调函数。

       以“状态机思维”分析libuv源码,为后续开发奠定基础。状态机思想提供了一种简洁高效的方式来描述程序的工作流程。在libuv中,主要有两种核心数据结构:Handle与Request。Handle代表常驻内存提供服务的数据结构,如uv_tcp_s,表示TcpServer,不断对外提供服务,同样可以作为TcpClient。Request则代表一次请求,如uv_req_s,其生命周期与请求处理过程相同,不会驻留在内存中。请求被处理后,该数据结构随即释放。

       libuv能够处理多种不同事件,常见的几种包括:网络事件、文件系统事件、信号事件、异步操作完成事件等。未来,我们将深入解析这些核心事件的相关源代码。

代码保护软件.NET Reactor 是什么

       .NET Reactor是一个强大的代码保护和软件许可系统,适用于.NET Framework编写的软件,支持生成.NET程序集的所有语言。它的主要特点是防止知识产权盗窃,因为编译为Microsoft.NET框架的程序不会直接作为机器代码执行,而是被翻译成称为通用中间语言指令(CIL)的东西。CIL在程序运行时由.NET框架解释,而不是直接执行。

       传统保护解决方案是混淆,但. NET Reactor提供更高级别的保护。混淆使源代码更难被理解,通过用无意义的名称替换类、方法、属性和变量的名称,但它对方法中的源代码没有作用。. NET Reactor不仅可以执行混淆,还能将知识产权包裹在更多的保护层中,拒绝访问源代码,即使是对您的辛勤工作决心窃取的个人或团体。

       . NET Reactor通过多种方法防止反编译,包括生成不能直接理解为CIL的文件,在潜在黑客和您的.NET程序集之间构建了一个本机代码墙。这些方法包括行业领先的NecroBit技术,使重构源代码的难度大大增加。除了保护知识产权,. NET Reactor还提供强大的选项,通过使用各种试用版和完整版锁强制执行许可条款,保护收入流。

       保护机制非常简单,只需要下载并安装.NET Reactor,在几分钟内生成第一个真正受保护的.NET程序集,无需对源代码进行任何更改。它提供简单可靠的方法来保护和管理您的软件。

Reactor-Netty基本抽象类介绍

       概述

       之前已经把reactor3看的差不多了,在学会webflux之前还需要了解Reactor-Netty的相关知识,然后才能看懂webflux,然后才能看懂Gateway.

LoopResource

       首先先学习几个基本的类才能看懂Reactor-Netty在干什么.我们先来看LoopResource类.官方说这个类是一个EventLoopGroup 的 selector并且关联了 Channel的工厂

* An { @link EventLoopGroup} selector with associated* { @link io.netty.channel.Channel} factories.

       我们来看一下LoopResource提供的一些方法

static LoopResources create(String prefix) { if (Objects.requireNonNull(prefix, "prefix").isEmpty()) { throw new IllegalArgumentException("Cannot use empty prefix"); } return new DefaultLoopResources(prefix, DEFAULT_IO_SELECT_COUNT, DEFAULT_IO_WORKER_COUNT, true);}

        我们来看看DefaultLoopResource内部实现

        其实内部就是缓存了一堆的EventLoopGroup

ChannelPipelineConfigurer

        这个类的作用就是Channel创建好之后,在读取数据之前的初始化工作,我们看几个实现类 HttpServerChannelInitializer

ChannelGroup

       官方解释: 一个线程安全的集合,里面装的是打开的Channel,并且提供了很多操作Channel的方法,关闭的Channel会自动被group剔除.一个Channel可以属于多个Group

       先来看看唯一一个实现类DefaultChannelGroup的源码

        可以看到内部就是两个Map维护服务端和客户端的Channel,然后还有一个监听器.接下来看看添加Channel的方法再来看看是如何自动把过期Channel移除的,channel关闭之后会出发listener,listener会调用remove方法

        其实就是很简单的从map中移除数据的逻辑

ConnectionObserver

       从字面上看就是连接的观察者.是一个Connection的生命周期观察器.核心方法是 onStateChange.子类很多,等看源码的时候看到具体的再看源码.我们先来看ConnectionObserver定义的几个状态

TransportConfig

       一个配置的抽象类,里面保存了一些属性

        我们上面介绍的那些类都被保存在了这个Config里面.来看看其中一些比较重要的子类

ServerTransportConfig

        可以看到这个子类里面提供了两个ConnectionObserver我们分别来看一看

ServerTransportDoOnconnectionServerTransportDoOn原文:/post/

redis源码解读(一):事件驱动的io模型,为什么,是什么,怎么做

       Redis作为一个高性能的内存数据库,因其出色的读写性能和丰富的数据结构支持,已成为互联网应用不可或缺的中间件之一。阅读其源码,可以了解其内部针对高性能和分布式做的种种设计,包括但不限于reactor模型(单线程处理大量网络连接),定时任务的实现(面试常问),分布式CAP BASE理论的实际应用,高效的数据结构的实现,其次还能够通过大神的代码学习C语言的编码风格和技巧,让自己的代码更加优雅。

       下面进入正题:为什么需要事件驱动的io模型

       我们可以简单地将一个服务端程序拆成三部分,接受请求->处理请求->返回结果,其中接收请求和处理请求便是我们常说的网络io。那么网络io如何实现呢,首先我们介绍最基础的io模型,同步阻塞式io,也是很多同学在学校所学的“网络编程”。

       使用同步阻塞式io的单线程服务端程序处理请求大致有以下几个步骤

       其中3,4步都有可能使线程阻塞(6也会可能阻塞,这里先不讨论)

       在第3步,如果没有客户端请求和服务端建立连接,那么服务端线程将会阻塞。如果redis采用这种io模型,那主线程就无法执行一些定时任务,比如过期key的清理,持久化操作,集群操作等。

       在第4步,如果客户端已经建立连接但是没有发送数据,服务端线程会阻塞。若说第3步所提到的定时任务还可以通过多开两个线程来实现,那么第4步的阻塞就是硬伤了,如果一个客户端建立了连接但是一直不发送数据,服务端便会崩溃,无法处理其他任何请求。所以同步阻塞式io肯定是不能满足互联网领域高并发的需求的。

       下面给出一个阻塞式io的服务端程序示例:

       刚才提到,阻塞式io的主要问题是,调用recv接收客户端请求时会导致线程阻塞,无法处理其他客户端请求。那么我们不难想到,既然调用recv会使线程阻塞,那么我们多开几个几个线程不就好了,让那些没有阻塞的线程去处理其他客户端的请求。

       我们将阻塞式io处理请求的步骤改造下:

       改造后,我们用一个线程去做accept,也就是获取已经建立的连接,我们称这个线程为主线程。然后获取到的每个连接开一个新的线程去处理,这样就能够将阻塞的部分放到新的线程,达到不阻塞主线程的目的,主线程仍然可以继续接收其他客户端的连接并开新的线程去处理。这个方案对高并发服务器来说是一个可行的方案,此外我们还可以使用线程池等手段来继续优化,减少线程建立和销毁的开销。

       将阻塞式io改为多线程io:

       我们刚才提到多线程可以解决并发问题,然而redis6.0之前使用的是单线程来处理,之所以用单线程,官方给的答复是redis的瓶颈不在cpu,既然不在cpu那么用单线程可以降低系统的复杂度,避免线程同步等问题。如何在一个线程中非阻塞地处理多个socket,进而实现多个客户端的并发处理呢,那就要借助io多路复用了。

       io多路复用是操作系统提供的另一种io机制,这种机制可以实现在一个线程中监控多个socket,返回可读或可写的socket,当一个socket可读或可写时再去操作它,这样就避免了对某个socket的阻塞等待。

       将多线程io改为io多路复用:

       什么是事件驱动的io模型(Reactor)

       这里只讨论redis用到的单线程Reactor模型

       事件驱动的io模型并不是一个具体的调用,而是高并发服务器的一种抽象的编程模式。

       在Reactor模型中,有三种事件:

       与这三种事件对应的,有三种handler,负责处理对应的事件。我们在一个主循环中不断判断是否有事件到来(一般通过io多路复用获取事件),有事件到来就调用对应的handler去处理时间。

       听着玄乎,实际上也就这一张图:

       事件驱动的io模型在redis中的实现

       以下提及的源码版本为 5.0.8

       文字的苍白的,建议参照本文最后的方法下载代码,自己调试下

       整体框架

       redis-server的main方法在 src/server.c 最后,在main方法中,首先进行一系列的初始化操作,最后进入进入Reactor模型的主循环中:

       主循环在aeMain函数中,aeMain函数传入的参数 server.el ,是一个 aeEventLoop 类型的全局变量,保存了主循环的一些状态信息,包括需要处理的读写事件、时间事件列表,epoll相关信息,回调函数等。

       aeMain函数中,我们可以看到当 eventLoop->stop 标志位为0时,while循环中的内容会被重复执行,每次循环首先会调用beforesleep回调函数,然后处理时间。beforesleep函数在main函数中被注册,会进行集群状态更新、AOF落盘等任务。

       之所以叫beforesleep,是因为aeProcessEvents函数中包含了获取事件和处理事件的逻辑,其中获取读写事件时通过epoll_wait实现,会将线程阻塞。

       在aeProcessEvents函数中,处理读写事件和时间事件,参数flags定义了需要处理的事件类型,我们可以暂时忽略这个参数,认为读写时间都需要处理。

       aeProcessEvents函数的逻辑可以分为三个部分,首先获取距离最近的时间事件,这一步的目的是为了确定epoll_wait的超时时间,并不是实际处理时间事件。

       第二个部分为获取读写事件并处理,首先调用epoll_wait,获取需要处理的读写事件,超时时间为第一步确定的时间,也就是说,如果在超时时间内有读写事件到来,那么处理读写时间,如果没有读写时间就阻塞到下一个时间事件到来,去处理时间事件。

       第三个部分为处理时间事件。

       事件注册与获取

       上面我们讲了整体框架,了解了主循环的大致流程。接下来我们来看其中的细节,首先是读写事件的注册与获取。

       redis将读、写、连接事件用结构aeFileEvent表示,因为这些事件都是通过epoll_wait获取的。

       事件的具体类型通过mask标志位来区分。aeFileEvent还保存了事件处理的回调函数指针(rfileProc、wfileProc)和需要读写的数据指针(clientData)。

       既然读写事件是通过epoll io多路复用实现,那么就避不开epoll的三部曲 epoll_create epoll_ctrl epoll_wait,接下来我们看下redis对epoll接口的封装。

       我们之前提到aeMain函数的参数是一个 aeEventLoop 类型的全局变量,aeEventLoop中保存了epoll文件描述符和epoll事件。在aeApiCreate函数(src/ae_epoll.c)中,会调用epoll_create来创建初始化epoll文件描述符和epoll事件,调用关系为 main -> initServer -> aeCreateEventLoop -> aeApiCreate

       调用epoll_create创建epoll后,就可以添加需要监控的文件描述符了,需要监控的情形有三个,一是监控新的客户端连接连接请求,二是监控客户端发送指令,也就是读事件,三是监控客户端写事件,也就是处理完了请求写回结果。

       这三种情形在redis中被抽象为文件事件,文件事件通过函数aeCreateFileEvent(src/ae.c)添加,添加一个文件事件主要包含三个步骤,通过epoll_ctl添加监控的文件描述符,指定回调函数和指定读写缓冲区。

       最后是通过epoll_wait来获取事件,上文我们提到,在每次主循环中,首先根据最近到达的时间事件来计算epoll_wait的超时时间,然后调用epoll_wait获取事件,再处理事件,其中获取事件在函数aeApiPoll(src/ae_epoll.c)中。

       获取到事件后,主循环中会逐个调用事件的回调函数来处理事件。

       读写事件的实现

       写累了,有空补上……

       如何使用vscode调试redis源码

       编译出二进制程序

       这一步有可能报错:

       jemalloc是内存分配的一种更高效的实现,用于代替libc的默认实现。这里报错找不到jemalloc,我们只需要将其替换成libc默认实现就好:

       如果报错:

       我们可以在src目录找到一个脚本名为mkreleasehdr.sh,其中包含创建release.h的逻辑,将报错信息网上翻可以发现有一行:

       看来是这个脚本没有执行权限,导致release.h没有成功创建,我们需要给这个脚本添加执行权限然后重新编译:

       2. 创建调试配置(vscode)

       创建文件 .vscode/launch.json,并填入以下内容:

       然后就可以进入调试页面打断点调试了,main函数在 src/server.c

更多相关资讯请点击【时尚】频道>>>