1.Android Framework源码面试——Activity启动流程
2.Android Framework源码解析,看这一篇就够了
3.Android Activity Deeplink启动来源获取源码分析
Android Framework源码面试——Activity启动流程
面试官常问关于Activity启动模式的问题,但这涉及的知识点远不止四种模式。默认启动模式会因Intent Flag的设置而发生变化,面试时仅凭流程描述往往难以全面理解。
设置FLAG_ACTIVITY_NEW_TASK在Service中启动Activity时,离岛商品溯源码Activity的启动行为会有所不同。不同场景下,Activity的启动表现各不相同。以singleInstance属性为例,即使设置了,使用Intent.FLAG_ACTIVITY_CLEAR_TASK启动时,并非完全遵循只复用实例的原则。
此外,不同Intent Flag的叠加使用也有各自的特性和表现。单一讨论启动模式的原理不易全面,理解需要结合实际项目、寺庙网站asp源码阅读源码或实验验证。
面试中,面试官可能会提出深入的、场景化的关于Activity启动的问题。例如,在Service中启动Activity时,FLAG_ACTIVITY_NEW_TASK的作用是什么?设置singleInstance后,使用FLAG_ACTIVITY_CLEAR_TASK启动时的行为如何?不同Intent Flag的组合使用又会产生哪些不同的结果?
理解这些知识点不仅需要对Android框架有深入的了解,还需要通过实践去验证和理解。比如,尝试在实际项目中使用不同的Intent Flag,观察Activity的启动行为,这样能更好地理解其背后的原理。
Android Framework源码解析,看这一篇就够了
深入解析Android Framework源码,理解底层原理是网赚团购网站源码Android开发者的关键。本文将带你快速入门Android Framework的层次架构,从上至下分为四层,掌握Android系统启动流程,了解Binder的进程间通信机制,剖析Handler、AMS、WMS、Surface、SurfaceFlinger、PKMS、InputManagerService、DisplayManagerService等核心组件的工作原理。《Android Framework源码开发揭秘》学习手册,全面深入地讲解Android框架初始化过程及主要组件操作,适合有一定Android应用开发经验的开发者,旨在帮助开发者更好地理解Android应用程序设计与开发的微转妹 源码核心概念和技术。通过本手册的学习,将能迅速掌握Android Framework的关键知识,为面试和实际项目提供有力支持。
系统启动流程分析覆盖了Android系统层次角度的三个阶段:Linux系统层、Android系统服务层、Zygote进程模型。理解这些阶段的关键知识,对于深入理解Android框架的启动过程至关重要。
Binder作为进程间通信的重要机制,在Android中扮演着驱动的角色。它支持多种进程间通信场景,包括系统类的打电话、闹钟等,以及自己创建的WebView、视频播放、音频播放、砸金蛋 ios源码大图浏览等应用功能。
Handler源码解析,揭示了Android中事件处理机制的核心。深入理解Handler,对于构建响应式且高效的Android应用至关重要。
AMS(Activity Manager Service)源码解析,探究Activity管理和生命周期控制的原理。掌握AMS的实现细节,有助于优化应用的用户体验和性能。
WMS(Window Manager Service)源码解析,了解窗口管理、布局和显示策略的实现。深入理解WMS,对于构建美观且高效的用户界面至关重要。
Surface源码解析,揭示了图形渲染和显示管理的核心。Surface是Android系统中进行图形渲染和显示的基础组件,掌握其原理对于开发高质量的图形应用至关重要。
基于Android.0的SurfaceFlinger源码解析,探索图形渲染引擎的实现细节。SurfaceFlinger是Android系统中的图形渲染核心组件,理解其工作原理对于性能优化有极大帮助。
PKMS(Power Manager Service)源码解析,深入理解电池管理策略。掌握PKMS的实现,对于开发节能且响应迅速的应用至关重要。
InputManagerService源码解析,揭示了触摸、键盘输入等事件处理的核心机制。深入理解InputManagerService,对于构建响应式且用户体验优秀的应用至关重要。
DisplayManagerService源码解析,探究显示设备管理策略。了解DisplayManagerService的工作原理,有助于优化应用的显示性能和用户体验。
如果你对以上内容感兴趣,点击下方卡片即可免费领取《Android Framework源码开发揭秘》学习手册,开始你的Android框架深入学习之旅!
Android Activity Deeplink启动来源获取源码分析
Deeplink在业务模块中作为外部应用的入口提供,不同跳转类型可能会导致应用提供不一致的服务,通常通过反射调用Activity中的mReferrer字段获取跳转来源的包名。然而,mReferrer存在被伪造的风险,可能导致业务逻辑出错或经济损失。因此,我们需要深入分析mReferrer的来源,并寻找更为安全的获取方法。
为了深入了解mReferrer的来源,我们首先使用搜索功能在Activity类中查找mReferrer,发现其在Attach方法中进行赋值。进一步通过断点调试跟踪调用栈,发现Attach方法是由ActivityThread.performLaunchActivity调用的。而performLaunchActivity在调用Attach时,传入的referrer参数实际上是一个ActivityClientRecord对象的referrer属性。深入分析后,发现referrer是在ActivityClientRecord的构造函数中被赋值的。通过进一步的调试发现,ActivityClientRecord的实例化来自于LaunchActivityItem的mReferrer属性。接着,我们分析了mReferrer的来源,发现它最终是由ActivityStarter的setCallingPackage方法注入的。而这个setCallingPackage方法的调用者是ActivityTaskManagerService的startActivity方法,进一步追踪调用链路,我们发现其源头是在App进程中的ActivityTaskManager.getService()方法调用。
在分析了远程服务Binder调用的过程后,我们发现获取IActivityTaskManager.Stub的方法是ActivityTaskManager.getService()。这使得我们能够追踪到startActivity方法的调用,进而找到发起Deeplink的应用调用的具体位置。通过这个过程,我们确定了mReferrer实际上是通过Activity的getBasePackageName()方法获取的。
为了防止包名被伪造,我们注意到ActivityRecord中还包含PID和Uid。通过使用Uid结合包管理器的方法来获取对应的包名,可以避免包名被伪造。通过验证Uid的来源,我们发现Uid实际上是通过Binder.getCallingUid方法获取的,且Binder进程是无法被应用层干涉的,因此Uid是相对安全的。接下来,我们可以通过Uid来置换包名,进一步提高安全性。
总结,mReferrer容易被伪造,应谨慎使用。通过使用Uid来获取包名,可以提供一种更为安全的获取方式。此过程涉及对源代码的深入分析和调试,作者Chen Long为vivo互联网客户端团队成员。