1.代码编程【期货量化】交易系统代开发策略(Python天勤)
2.请问国内哪家量化平台比较好?
3.股票里的量化量化源码是什么意思
4.OpenCV Carotene 源码阅读(持续更新)
代码编程【期货量化】交易系统代开发策略(Python天勤)
期货量化服务全新上线!
您是编程编程否梦想着将自己的交易策略转化为高效的自动化交易系统?现在,这不再是源码源码梦想,我们的量化量化服务让每一个交易者都能做到。借助流行的编程编程金融编程语言Python,结合天勤量化平台的源码源码aide 编译 源码强大功能,我们的量化量化系统支持国内5大交易所、商品期货、编程编程金融期货(包括股指期货、源码源码国债期货),量化量化轻松实现期货量化交易。编程编程
我们深知期货市场的源码源码两大痛点:交易者往往缺乏编程技能,而程序员往往对市场运作了解不够。量化量化为此,编程编程我们提供免费代写服务,源码源码帮助您将想法变为现实,实现期货自动化交易,24币源码解放您的时间和双手。
私人定制期货量化策略,将为您带来以下显著优势:
1. 策略完全属于您,无认知盲区,易于理解。
2. 策略符合您的投资风格,避免与市场同流合污。
3. 个性化策略设计,提高实战有效性,避免策略同质化。
服务承诺:提供终身免费维护,确保您的交易系统持续稳定运行。
对于汇飞量化合作期货公司的客户,只要满足一定的交易手数,即可享受免费代写服务,市场价起的麦芒装修源码费用由此得到覆盖。策略完成后,可用于模拟盘交易、历史回测及实盘交易,同时享有终身免费维护(不包含新增功能)。
对于希望在其他期货公司开户的客户,我们提供有偿策略代写服务,费用根据策略复杂度而定。服务流程如下:
1. 提交策略文本。
2. 评估工作量并报价。
3. 预付%定金。
4. 技术人员开始编写代码,预计1-2周完成。
5. 提交策略供客户测试一周,免费修改,如需增加功能,根据工作量加收费用。call指令源码
6. 完成后,客户支付剩余款项,获得源代码。
所有合作代写策略的客户,都将获赠一款价值元的趋势追踪量化交易系统,让您的交易策略更加全面、高效。
请问国内哪家量化平台比较好?
推荐澎博财经的真格量化。云端运行,行情和交易速度都经过专业优化。
支持期货、期权和ETF的tick级别回测。
有完善的文档和培训教程。
支持编程语言为Python2.7和Python3.5.
上手很快,对用户非常友好。
股票里的xlhtml源码实例源码是什么意思
股票中的源码通常指的是用于分析、交易或获取股票市场数据的编程代码。这些代码可能由各种编程语言编写,如Python、C++、Java等,并通常用于构建算法交易系统、量化交易策略、技术指标分析工具等。
详细来说,源码在股票领域的应用主要体现在以下几个方面:
1. 数据获取与处理:源码可以用来从股票交易所、财经数据提供商等处获取实时或历史股票数据。例如,使用Python的pandas库,我们可以方便地获取、清洗和处理股票数据。
2. 策略开发与回测:量化交易者会编写源码来开发交易策略,并通过历史数据进行策略回测。这样可以在实际投入资金前评估策略的有效性和风险。例如,一个简单的移动平均交叉策略可以通过比较短期和长期移动平均线的位置来确定买入和卖出点。
3. 技术指标计算:源码可用于计算各种技术指标,如RSI、MACD、布林带等,这些指标有助于交易者分析股票价格的动量和趋势。
4. 自动化交易:一旦策略经过验证并被认为是有利可图的,源码可以被用来构建自动化交易系统。这些系统可以实时监控市场,并在满足特定条件时自动执行交易。
5. 风险管理与优化:源码还可用于开发风险管理工具,如止损和止盈算法,以及用于优化投资组合配置的算法。
举例来说,一个Python源码片段可能用于从网络API获取股票数据,计算某只股票的简单移动平均线,并根据移动平均线的交叉点生成买入或卖出信号。这样的源码不仅有助于交易者做出更明智的投资决策,还可以通过自动化减少人为错误和情绪干扰。
OpenCV Carotene 源码阅读(持续更新)
OpenCV的Carotene库是NVIDIA为优化计算机视觉(CV)操作而精心设计的,特别针对ARM Neon架构,旨在加速诸如resize和Canny等关键算法。这款库以其清晰的代码和对SIMD编程初学者的友好性而备受赞誉。本文将深入探索Carotene的魅力,揭示其独特的功能点,如accumulate函数的多变接口,包括square accumulate和addweight,后者展示了创新的处理策略。
Carotene的Blur(k3x3_u8)处理方法与众不同,采用了seperateFilter算法,而非传统的O(1)复杂度,展示了其在效率优化上的独到之处。值得一提的是,行方向移位求和和normalize系数的量化计算,都被Carotene以精细的技巧逐一解析。要了解更多细节,不妨直接查看其源码,那里充满了值得学习的见解和实践经验。
Carotene在指令处理上展现出了高效能,如一次性执行乘系数、类型转换和右移等操作,通过vqrdmulhq_s等矢量化指令,实现了寄存器数据的复用。对于边界处理,left_border通过set_lane技术轻松搞定,而right_border的成本则更低。库中还包括了integral和sqrtIntegral的实现,行方向积分的向量化通过移位操作得以高效完成,即使在arm Neon缺乏element shift指令的情况下,Carotene也能通过uint_t标量移位巧妙解决。
在模糊处理上,GaussianBlur遵循Blur的优化思路,对gauss_kernel进行了量化。另外,还有诸如absdiff、add_weighted、add、bitwise以及channel_extract/combine等N-1种基础算子,它们巧妙地结合了neon指令和宏定义,为性能提升做出了贡献。这些细节的精心设计,充分体现了Carotene在提升OpenCV性能上的匠心独运。
总的来说,Carotene的源码是学习SIMD编程和OpenCV优化的绝佳资源,无论是对于开发者还是对性能追求者来说,都是一份值得深入探索的宝藏。如果你对这些技术感兴趣,不要犹豫,立即投身于源码的世界,你会发现其中隐藏的无数精彩。