1.求易语言快速登录G_tk源码QQ空间的源码
2.用tk.mybaits实现指定字段更新
3.Python modbus_tk 库源码分析
求易语言快速登录G_tk源码QQ空间的
.版本 2
cookie = 取COOKIE (“user.qzone.qq.com”)
skey = 取指定内容 (cookie, “skey=”, “;”)
.如果真 (取文本长度 (skey) < 6)
skey = 取文本之后 (cookie, “skey=”)
.如果真结束
.如果真 (取文本长度 (skey) > )
skey = 取文本之后 (cookie, “lskey=”)
skey = 取指定内容 (skey, “skey=”, “;”)
.如果真结束
tk值 = 计算G_tk (skey)
' skey=@AjfXjgxTd
' TK值=
‘取cookie找到skey 再进行计算得出的就是g_tk
.版本 2
.子程序 计算G_tk, 文本型
.参数 skey, 文本型
.局部变量 hash, 整数型
.局部变量 计次, 整数型
hash =
.变量循环首 (1, 取文本长度 (skey), 1, 计次)
hash = hash + hash × 求次方 (2, 5) + 取字节集数据 (ANSI转UNICODE (取文本中间 (skey, 计次, 1)), 3, )
.变量循环尾 ()
返回 (到文本 (位与 (hash, 十六到十 (“7fffffff”))))
到其他代码自己写下,群
用tk.mybaits实现指定字段更新
在使用tk.mybaits框架的分析系统中实现指定字段的更新,由于tk.mybaits框架本身并不支持此功能,源码导致寻找解决方案的分析过程颇具挑战性。经过一段时间的源码摸索和资料查阅,终于找到了解决方法。分析网吧游戏菜单源码以下是源码具体实现步骤,以供有相似需求的分析开发者参考。 若系统使用的源码是Mybatis-Plus框架,实现指定字段更新则相对简便。分析但使用tk.mybaits框架时,源码默认不支持该功能,分析获取A股数据 源码通常的源码解决方法是先查询数据,随后更新所需字段并再次更新整条数据。分析然而,源码这种方法在并发情况下容易引发问题。 通过深入研究tk.mybaits的GitHub源码和相关issue的回答,我找到了实现指定字段更新的关键线索。最终,通过以下步骤成功实现了功能: 首先,定义一个名为UpdateAppointColumnMapper的接口,用于实现指定字段的更新。 其次,王者源码 c语言大佬定义一个名为UpdateByExampleAppointColumnProvider的Provider,以支持指定字段更新的逻辑。 然后,创建一个继承自UpdateAppointColumnMapper的Mapper类,如BaseMapper,用于实现数据仓储的基本功能。 引入LambdaUpdateWrapper,以更灵活地实现指定字段更新。具体实现方式包括:使用实体对象更新
使用MAP更新
使用LambdaUpdateWrapper更新
通过上述步骤,解决了tk.mybaits框架中指定字段更新的问题,为相关开发任务提供了有力的仿资金博弈指标源码技术支持。分享这一解决方法,希望能为遇到相同挑战的开发者提供一些灵感和帮助。Python modbus_tk 库源码分析
modbus_tcp 协议是工业项目中常用的设备数据交互协议,基于 TCP/IP 协议。协议涉及两个角色:client 和 server,或更准确地称为 master 和 slave。modbus_tk 库作为 Python 中著名且强大的 modbus 协议封装模块,其源码值得深入分析,尤其是在关注并发量等方面的需求时。深入研究 modbus_tk 库的源代码和实现逻辑,对在库的箱体买卖提示公式源码基础上进行更进一步的开发尤其重要。因此,本文旨在提供对 modbus_tk 库源码的深入解析,以供参考。
实例化 TcpMaster 对象时,首先导入 TcpMaster 类,该类继承自 Master,但在实例化时并未执行任何操作。Master 的 `__init__()` 方法同样没有执行任何具体任务,这使得 TCP 链接在创建 TcpMaster 实例时并未立即建立。TCP 链接的建立在 `open()` 方法中实现,该方法由 TcpMaster 类执行。在 `open()` 方法中,自定义了超时时间,进一步保证了 TCP 连接的建立。
在 TcpMaster 类的 `execute()` 方法中,核心逻辑在于建立 TCP 协议的解包和组包。在读写线圈或寄存器等操作时,都会调用 `execute()` 方法。详细分析了 `execute()` 方法的具体实现,包括通过注释掉的组包等过程代码,以及 `TcpMaster._make_query()` 方法的实现。`_make_query()` 方法封装了请求构建过程,包括生成事务号、构建请求包和发送请求。
在请求构建完成后,`_send()` 方法负责通过 `select` 模块进行连接状态检测,确保发送数据前连接无异常。通过分析 `execute()` 方法的后续逻辑,我们能够看到一个完整的组包、发送数据及响应解析的源码流程。响应解析涉及 `TcpMaster.execute()` 方法中对 MBAP 和 PDU 的分离、解包及数据校验。
在解析响应信息时,`TcpQuery().parse_response()` 方法解包并验证 MBAP 和 PDU,确保数据一致性。通过此过程,获取了整个数据体,完成了响应信息的解析。在 `execute()` 方法的后续部分,没有执行新的 I/O 操作,进一步简化了流程。
为了保障线程安全,`threadsafe` 装饰器被添加在 `Master.execute()` 方法及 `TcpQuery._get_transaction_id()` 方法上。这一装饰器确保了跨线程间的同步,但可能引起资源竞争问题。在实际应用中,为了避免同一设备不能同时读写的情况,可以显式传递 `threadsafe=False` 关键字参数,并实现自定义锁机制。
modbus_tk 模块提供了丰富的钩子函数,如 `call_hooks`,在数据传递生命周期中自动运行,实现特定功能的扩展。常见的钩子函数包括初始化、结束、请求处理等,这些功能的实现可以根据具体需求进行定制化。