1.xfs文件系统:layout与架构、分析分析法源码分析
2.莱昂氏UNIX源代码分析目 录
3.LiteOS:剖析时间管理模块源代码
4.linux系统调用之write源码解析(基于linux0.11)
5.glibc源码分析(二)系统调用
6.Android Framework源码解析,系统系统看这一篇就够了
xfs文件系统:layout与架构、源码分析
本文由腾讯工程师aurelian撰写,分析分析法深入解析Linux内核中xfs文件系统的系统系统layout与架构,结合源码剖析其工作原理。源码源码android xml源码首先,分析分析法xfs的系统系统layout包括超级块、AGF管理(空闲空间追踪)、源码源码AGI管理(inode管理)、分析分析法AGFL(空闲链表)以及B+树结构等组成部分,系统系统每个部分都有其特定功能,源码源码如超级块用于存储关键信息,分析分析法B+树用于快速查找空间。系统系统
在文件操作方面,源码源码xfs支持iops、fops和aops三个操作集,分别负责inode元数据、内存级读写和磁盘级读写。创建文件时,会检查quota并预留空间,通过一系列函数如xfs_trans_reserve_quota和xfs_dir_ialloc进行操作。分配inode时,会依据agi信息和ag的空闲情况动态分配,并通过xfs_iget确保inode在核心内存中可用。
磁盘级inode分配涉及agi信息的获取和B+树的查找,xfs_ialloc_ag_alloc会根据空闲inode情况完成连续或非连续的分配。写操作涉及内存和磁盘级别,buffer io通过page cache管理,直接io和DAX write则有特定的curl源码怎么运行处理方式。xfs的映射关系和data区域树管理对于高效读写至关重要。
工具方面,mkfs.xfs用于格式化,xfs_fsr、xfs_bmap、xfs_info等用于维护和监控文件系统,xfs_admin和xfs_copy用于系统参数调整和数据复制,xfs_db则是用于调试的工具。希望本文能帮助读者理解xfs的复杂性,如需了解更多详情,可关注鹅厂架构师公众号。
莱昂氏UNIX源代码分析目 录
莱昂氏UNIX源代码分析目录
1. 献辞 2. 致谢 3. 序(一) 4. 序(二) 5. 历史注记上篇: UNIX操作系统版本6源代码
5.1 Unix操作系统过程分类索引
5.2 Unix操作系统文件及过程
5.3 定义的符号列表
5.4 源代码交叉引用列表
第一部分: 初始化与进程初始化
6.1 初始化
6.2 进程初始化
第二部分: 陷入、中断、系统调用和进程管理
7.1 硬件中断和陷入
7.2 汇编语言陷阱例程
7.3 时钟中断
7.4 陷入与系统调用
7.5 进程管理
第三部分: 程序交换、基本输入/输出、块设备
8.1 程序交换
8.2 基本I/O介绍
8.3 rk磁盘驱动器
8.4 缓存处理
第四部分: 文件和目录、文件系统、管道
9.1 文件存取与控制
9.2 文件目录和目录文件
9.3 文件系统
9.4 管道
第五部分: 面向字符的特殊文件
.1 面向字符的设备
.2 字符处理
.3 交互式终端
.4 终端设备处理程序
LiteOS:剖析时间管理模块源代码
LiteOS的时间管理模块基于系统时钟,分为两个关键部分:SysTick中断和应用程序时间服务。SysTick中断为任务调度提供稳定的时钟节拍,而应用程序时间服务则包括时间转换、统计和延迟等功能,这些都是通过系统时钟的周期性中断实现的。
系统时钟通常由定时器/计数器驱动,周期性地产生中断,每秒的Tick数由用户配置决定。比如,如果配置为每秒个Tick,那么每个Tick代表1毫秒。泉州建站模板源码Cycle是系统最小的计时单位,由主时钟频率决定。在 MHz的CPU中,1秒内会产生,,个Cycle。
用户在秒、毫秒级别计时,而操作系统则使用Tick作为基本单位。在需要执行任务挂起或延迟操作时,时间管理模块会处理Tick与用户时间单位之间的转换。
源代码可在LiteOS开源站点获取,涉及的文件包括kernel\include\los_tick.h、kernel\base\include\los_tick_pri.h等,具体可以参考gitee.com/LiteOS/LiteOS...。本文将通过分析STMFIDiscovery板子的源码,深入剖析时间管理模块的初始化、配置和关键函数。
首先,时间管理模块的初始化和启动过程涉及系统时钟配置和OsTickInit函数,配置项包括系统时钟和每秒Tick数。然后是OsTickStart函数,启动时会初始化定时器并启用Tick中断。
此外,时间管理模块提供的时间转换、统计和延时管理功能,如从毫秒到Tick的转换,获取Tick内包含的Cycle数,以及微秒和毫秒级别的等待。这些功能的实现细节也在本文中进行了讲解。
总结来说,php镜像源码大全LiteOS的时间管理模块是任务调度和时间服务的核心,通过深入源码理解,开发者可以更好地利用这些功能进行高效的时间处理。
linux系统调用之write源码解析(基于linux0.)
Linux系统的write函数在底层操作上与read函数有相似之处。本文主要关注一般文件的写操作,我们首先从入口函数开始解析。
进入file_write函数,它的核心逻辑是根据文件inode中的信息,确定要写入的硬盘位置,即块号。如果目标块已存在,就直接返回块号;若不存在,则需要创建新的块。这个过程涉及到bmap函数,它负责根据文件系统状态为新块申请空间并标记为已使用。
创建新块的过程涉及到文件系统的超级块,通过检查当前块的使用情况,申请一个空闲块,并更新超级块以标记其为已使用。接着,超级块信息会被写回到硬盘,同时返回新建的块号。
回到file_write,处理完块的逻辑后,由于是新创建的块,其内容默认为0。这时,bread函数会读取新块的内容,这部分逻辑可以参考read函数的slam源码大全讲解分析。读取后,用户数据会被写入buffer,同时标记为待写回(脏)状态。重要的是,数据实际上并未立即写入硬盘,而是先存储在缓存中。系统会通过后台线程定期将缓存中的内容刷新到硬盘。
glibc源码分析(二)系统调用
在glibc源码中,许多系统调用被使用了.c封装的方式进行封装。这一过程借助嵌入式汇编,严格遵循系统调用封装规则。以stat函数为例,其实现揭示了.c封装的奥秘。
在源代码中,stat系统调用被INLINE_SYSCALL宏所封装。该宏首先调用INTERNAL_SYSCALL宏,执行系统调用并把返回值存入resultvar变量中。接下来,通过判断系统调用是否成功执行,采取相应的后续操作。若执行错误,则调用__syscall_error设置errno并返回-1;若执行成功,则返回resultvar。
在处理系统调用参数个数nr时,INTERNAL_SYSCALL宏发挥了关键作用。根据nr的不同,宏会调用不同的内部函数进行处理。例如,当nr为0时,调用INTERNAL_SYSCALL_MAIN_0宏,设置eax寄存器为系统调用号,执行*_dl_sysinfo函数进行系统调用。当nr为1时,宏将参数1存入ebx寄存器,同时设置eax寄存器为系统调用号,并执行系统调用。
类似的,nr为2、3、4、5或6时,宏分别会将参数2至6存入ecx、edx、esi、edi或ebp寄存器中,并与系统调用号相结合,执行*_dl_sysinfo函数。通过这一系列的嵌入式汇编操作,.c文件成功封装了系统调用,实现了高效、精确的调用过程。
总的来说,glibc中.c封装的实现展示了汇编语言的强大功能,以及在系统调用处理中的应用。通过精确的汇编指令和灵活的参数传递,封装过程确保了系统调用的执行效率和正确性。
Android Framework源码解析,看这一篇就够了
深入解析Android Framework源码,理解底层原理是Android开发者的关键。本文将带你快速入门Android Framework的层次架构,从上至下分为四层,掌握Android系统启动流程,了解Binder的进程间通信机制,剖析Handler、AMS、WMS、Surface、SurfaceFlinger、PKMS、InputManagerService、DisplayManagerService等核心组件的工作原理。《Android Framework源码开发揭秘》学习手册,全面深入地讲解Android框架初始化过程及主要组件操作,适合有一定Android应用开发经验的开发者,旨在帮助开发者更好地理解Android应用程序设计与开发的核心概念和技术。通过本手册的学习,将能迅速掌握Android Framework的关键知识,为面试和实际项目提供有力支持。
系统启动流程分析覆盖了Android系统层次角度的三个阶段:Linux系统层、Android系统服务层、Zygote进程模型。理解这些阶段的关键知识,对于深入理解Android框架的启动过程至关重要。
Binder作为进程间通信的重要机制,在Android中扮演着驱动的角色。它支持多种进程间通信场景,包括系统类的打电话、闹钟等,以及自己创建的WebView、视频播放、音频播放、大图浏览等应用功能。
Handler源码解析,揭示了Android中事件处理机制的核心。深入理解Handler,对于构建响应式且高效的Android应用至关重要。
AMS(Activity Manager Service)源码解析,探究Activity管理和生命周期控制的原理。掌握AMS的实现细节,有助于优化应用的用户体验和性能。
WMS(Window Manager Service)源码解析,了解窗口管理、布局和显示策略的实现。深入理解WMS,对于构建美观且高效的用户界面至关重要。
Surface源码解析,揭示了图形渲染和显示管理的核心。Surface是Android系统中进行图形渲染和显示的基础组件,掌握其原理对于开发高质量的图形应用至关重要。
基于Android.0的SurfaceFlinger源码解析,探索图形渲染引擎的实现细节。SurfaceFlinger是Android系统中的图形渲染核心组件,理解其工作原理对于性能优化有极大帮助。
PKMS(Power Manager Service)源码解析,深入理解电池管理策略。掌握PKMS的实现,对于开发节能且响应迅速的应用至关重要。
InputManagerService源码解析,揭示了触摸、键盘输入等事件处理的核心机制。深入理解InputManagerService,对于构建响应式且用户体验优秀的应用至关重要。
DisplayManagerService源码解析,探究显示设备管理策略。了解DisplayManagerService的工作原理,有助于优化应用的显示性能和用户体验。
如果你对以上内容感兴趣,点击下方卡片即可免费领取《Android Framework源码开发揭秘》学习手册,开始你的Android框架深入学习之旅!
深入研究LinuxTop源码linuxtop源码
Linux Top源码是一款Linux系统的系统性能实时监控工具,能够实时显示机器各个进程的耗费情况,帮助开发者更加快速准确地定位性能问题。要对Linux Top源码进行深入研究,首先要明确源码的结构。它的源码大致分为如下几个部分:
(1)文件系统框架:主要完成Linux Top源码的架构,文件夹管理,内核操作,支持等功能,相当于源码的“能力支持”层;
(2)核心逻辑:主要负责Linux Top源码的运行逻辑,要对所有进程的状态和负载进行实时统计,并进行有效管理,完成Linux Top源码的基本功能;
(3)视图层:主要负责收集到的数据的展示和用户交互功能,比如分类显示,排序,设置,搜索以及警报等功能;
(4)其他工具:负责对Linux Top源码的其他辅助功能,比如日志记录,安全保护,文件系统维护等等。
接下来要进行深入的研究就需要着手梳理源码,主要从以下几个方面进行:
(1)源码功能分析:根据源码分析功能模块,明确模块之间的相互依赖和权限控制,充分利用模块划分,清晰表达源码整体逻辑;
(2)源码流程分析:梳理出源码中所有重要流程,比如获取运行状态流程,处理数据流程,显示数据流程等等,然后进行优化;
(3)源码语义分析:通过性能测试和弱当性分析,确定源码的执行有效性,可以在代码中加入合理的日志,错误检查和解除和文档等;
(4)兼容检测:在上一步确定有效性之后,需要对Linux Top源码进行兼容检测,并保证其在不同系统环境下的运行有效性。
以上就是本次对Linux Top源码的深入研究的介绍,仅通过以上步骤并不能深入了解Linux Top源码的精髓,所以在实践中,还需要根据实际需求结合代码编写优化源码,最终达到开发者的要求为止。