皮皮网

【splice js 源码】【下载asp源码怎么使用】【风电物联网源码】openai源码对接

2025-01-01 10:49:56 来源:网页提示遮罩源码

1.开源Open WebUI - 大模型LLM web 聊天界面及在K8S集群中的源码部署
2.Python调用OpenAI
3.OpenAI/Triton MLIR 第零章: 源码编译
4.我做了个chatPPT(含源码和prompt)
5.[FastChat ]OpenAI的本地替代品
6.AUTOGEN | 上手与源码分析

openai源码对接

开源Open WebUI - 大模型LLM web 聊天界面及在K8S集群中的部署

       Open WebUI 是一个自托管的离线 Web 用户界面,专为支持多种大型语言模型(LLM)运行而设计。对接它提供丰富功能和直观界面,源码兼容 Ollama 和 OpenAI API。对接您可以在 GitHub 上找到源代码。源码

       Open WebUI 提供全面平台,对接splice js 源码方便与大型语言模型交互,源码并具备功能性和灵活性,对接以满足不同用户和应用场景需求。源码它旨在优化模型管理、对接更新、源码交互、对接历史管理和数据管理,源码同时支持语音和图像集成,对接以及 API 和安全性功能。源码界面还提供国际化支持。

       部署 Open WebUI 到 K8S 集群时,参考官方文档中的部署 YAML 文件。通常涉及编写简单的部署文件,如 `docker-compose.yaml`。部署过程中需注意服务配置和服务持久化卷(PVC)的设置。这些关键步骤确保 Open WebUI 在 K8S 环境中稳定运行,提供高效、安全的大型语言模型交互体验。

Python调用OpenAI

       安装Python环境,略。

       下载并安装VSCode编辑器,略。

       配置OpenAI环境变量,将替换为自己的密钥。OPENAI_BASE_URL设置为国内代理服务器地址。

       在Mac OS中,关闭科学上网状态后,安装项目依赖的包。

       创建源代码文件,包括.env文件和index.py文件。确保两个文件已保存。运行代码,成功运行后的下载asp源码怎么使用结果通常类似以下示例图。

       使用官方提供的OpenAI密钥,自行在OpenAI官方注册获取。

OpenAI/Triton MLIR 第零章: 源码编译

       本文旨在深入探讨开源AI项目OpenAI Triton MLIR,着重介绍Triton作为编程语言与编译器在GPU加速计算领域的应用与优化。Triton为用户提供了一种全新的方式,通过将其后端接入LLVM IR,利用NVPTX生成GPU代码,进而提升计算效率。相较于传统CUDA编程,Triton无需依赖NVIDIA的nvcc编译器,直接生成可运行的机器代码,体现出其在深度学习与数据科学领域的高性能计算潜力。Triton不仅支持NVIDIA GPU,还计划扩展至AMD与Intel GPU,其设计基于MLIR框架,通过Dialect支持多样化后端。本文将从源码编译角度出发,逐步解析Triton的设计理念与优化策略,为研究编译技术和系统优化的工程师提供宝贵资源。

       首先,需要访问Triton的官方网站,克隆其官方代码库,以便后续操作。构建过程涉及两个重要依赖:LLVM与pybind。LLVM作为Triton的核心后端,通过将高级Python代码逐步转换至LLVM IR,最终生成GPU可运行代码,体现了其在计算优化领域的优势。pybind组件则用于封装C++/CUDA或汇编代码,实现Python DSL与高性能组件的无缝集成。

       接下来,将LLVM与pybind分别编译安装,通过手动配置指定路径,确保编译过程顺利进行。LLVM的安装对于基于Triton进行二次开发的工程师和研究人员至关重要,因为它为Triton提供了强大的计算基础。在特定的commit ID下编译Triton,确保与后续版本兼容。风电物联网源码

       在编译过程中,配置pybind同样至关重要,它允许用户通过Python API调用高性能组件,实现自动化生成高性能算子。完成编译后,生成的.so文件(libtriton.so)为后续Triton的Python接口提供了支持。

       将libtriton.so移动至triton/python/triton/_C目录下,确保Python路径正确配置,实现无缝导入与调用。通过简单的import triton命令,即可开启Triton的开发之旅。验证Triton性能,可以选择tutorials目录下的示例代码,如-matrix-multiplication.py,通过运行该脚本,观察Triton在GPU上的性能表现。

       Triton在NVGPU上的成熟映射路线,从抽象的Python DSL到贴近GPU层面的IR,最终生成高效机器代码,体现了其在高性能计算领域的优越性。Triton未来的发展蓝图将支持更多前端语言,对接不同硬件厂商的硬件,实现高效映射,满足多样化计算需求。

我做了个chatPPT(含源码和prompt)

       实现了一个基于AI的chatPPT工具,此工具能够根据输入的话题或句子自动生成PPT,包括润色标题、选择主题颜色以及生成所有插图。工具原理涉及openAI的GPT 3.5 TURBO接口、Dalle2以及Python-pptx库。

       GPT 3.5 TURBO接口用于生成PPT结构文本,包括PPT标题、页面标题和内容等,同时根据文本内容选择适合的情感主题色彩。Dalle2则将生成的文本转化为相应的,Python-pptx库则负责构建PPTX文件。

       实现这个工具的关键在于制定合适的提示语,让AI理解用户需求并生成符合预期的宝塔面板怎么运行源码PPT。实现过程相对简单,但需要考虑科学上网、openAI接口费用(生成一个PPT费用约在0.1~0.2美元,主要成本来自接口)以及输出篇幅的限制。

       使用时需要注意以下几点:

       1、确保网络环境稳定,以便顺利使用工具。

       2、openAI接口使用需付费,费用主要依据生成数量,一般生成一个PPT的费用在0.1~0.2美元左右。

       3、由于AI接口限制输出最多个token,输出篇幅可能会受限。为解决这一问题,建议将用户输入内容分为多个部分,每次生成四个左右的主题,将这些主题的回复拼合,最终生成完整的PPT。虽然这样会增加成本,但可以有效解决输出限制问题。

       工具源码已提供,有兴趣的读者可自行下载和优化,以满足更多个性化需求。

[FastChat ]OpenAI的本地替代品

       在人工智能的热潮中,大模型如雨后春笋般涌现,确实展现出强大的能力。然而,如何有效利用这些模型,是我们需要考虑的关键问题。在众多解决方案中,FastChat作为亮点之一,吸引了我的注意。本文将详细介绍FastChat,一个用于构建和评估聊天机器人的开放平台。

       FastChat的核心优势在于其开放性和灵活性,支持市面上主流的大模型型号。安装方式有两种:一是护卫神网络验证源码通过pip直接安装,二是从源代码编译。在Mac上,需要进行适当的编译和安装步骤。

       在使用FastChat时,有多种设备选项可供选择。例如,仅使用CPU时,可以通过`--device cpu`和`--load-8bit`命令来优化内存使用,牺牲一些模型精度以适应资源有限的环境。单GPU支持默认使用GPU,但需注意内存需求。多GPU支持则允许模型并行,通过`--max-gpu-memory`调整每个GPU的内存分配。

       FastChat还提供了Web GUI服务,包括启动控制器、模型工作者(在CPU上使用8位压缩)和网络服务,兼容OpenAI的RESTful API和SDK。你可以通过发送测试消息来验证连接。此外,环境变量的调整,如超时设置和批量大小,有助于优化模型响应速度和内存使用。

       总的来说,FastChat是一个强大的本地替代品,能帮助你快速部署和集成大模型,如chatGLM3,用于创建智能应用。通过简单的API对接,你就能将其功能融入到各种定制化解决方案中,为你的项目增添智能化元素。

AUTOGEN | 上手与源码分析

       AUTOGEN是一个开源平台,主要功能是创建和管理自动化对话代理(agent)。这些代理能执行多种任务,包括回答问题、执行函数,甚至与其它代理进行交互。本文将介绍AUTOGEN中的关键组件,即Conversation Agent,并简单分析其多代理功能的源码实现。

       根据官网文档和参考代码,AUTOGEN利用OpenAI提供的服务来访问语言模型(Logic Unit)。任何部署了OpenAI兼容API的语言模型都可以无缝集成到AUTOGEN中。利用OpenAI的Tool功能,AUTOGEN能够调用函数,而不是使用自定义提示来引导逻辑模型选择工具。在请求体中提供候选函数信息,OpenAI API将从中选择最有可能满足用户需求的函数。每个agent都可使用send和receive方法与其他agent进行通信。

       在Autogen中,每个agent由Abilities & Prior Knowledge、Action & Stimuli、Goals/Preference、Past Experience等部分组成。语言模型(逻辑单元)通过调用OpenAI服务来实现,利用OpenAI提供的Tool功能调用函数。每个agent都维护自己的历史记录,以List[Message]的形式保存,包含对话信息和执行函数的结果等。

       Conversable Agent是Autogen的基本智能体类型,其他如AssistantAgent或UserProxyAgent都是基于此实现。在初始化时,通过配置列表来初始化OpenAI对象。generate_reply是核心功能,根据接收到的消息和配置,通过注册的处理函数和回复生成函数产生回复。此过程包括消息预处理、历史消息整理和回复生成。通过定制化钩子处理特定逻辑,考虑到调用工具、对话、参考历史经验等功能,generate_reply的大致运行流程如下:首先处理最后接收的消息,然后整理所有消息进行回复生成。

       Autogen将多种不同功能的agent整合到Conversable Agent中。generate_reply时,会根据消息判断是否需要终止对话或人工介入。回复逻辑包括关联或不关联函数的情况。通过代码执行器,代理安全执行GPT生成的代码,AutoGPT自带了Docker、Jupyter和本地三种代码执行器。多Agent对话通过initiate_chat函数启动,使用send和receive函数确保信息正确传递。这种设计允许灵活组合多个ConversableAgent,实现自定义的Agent系统。

       Autogen还提供GroupChat功能,允许多个Agent进行自由讨论或固定流程的工作流。开源社区的autogen.agentchat.contrib部分提供了许多自动化对话系统的贡献。此外,官方notebook中讨论了Agent优化器,允许自定义输出,将对话信息输出到前端UI界面。

       总之,Autogen作为Agent搭建工具,提供了基础功能,允许创建和管理自动化对话代理。其设计将执行工具与逻辑模型整合,简化了多代理对话和多功能任务的实现。通过源码分析,可以看到其灵活的架构和丰富的功能实现,为开发者提供了构建复杂对话系统的基础。

揭秘OpenAI新神器:Cursor源码深度解析与应用探索

       Cursor,一款专为编程与人工智能打造的编辑器,目前仍处于早期阶段,具备多项功能。由两家MIT高材生创立的公司于年在旧金山成立,获得OpenAI的投资。虽然Cursor的代码质量参差不齐,甚至可能部分由AI生成,其官网与代码仓库简陋,无详细文档。根据其官方声明,Cursor在智能性上比Copilot更出色。然而,实际功能还需通过官方提供的视频评估,视频展示了Cursor支持两种交互方式:通过cmd+k激活代码生成模式与cmd+l激活的聊天模式。生成代码的逻辑在源码文件的features/chat/chatThunks.ts中,通过向Cursor服务器发送POST请求,将信息通过token的方式流式返回,提供类似ChatGPT的体验。聊天模式下,Cursor能根据问题和文件上下文向AI提问。Cursor在理解工程上下文方面有显著进步,能够识别并提供项目中相关实现的文件路径。当前Cursor的核心优势在于免费特性及理解项目工程的能力,但其劣势在于对VSCode生态的挑战。

       在Cursor的内部实现中,通过解析输入的指令,结合编辑器与AI进行交互,实现代码生成、内容编辑与工程上下文理解等功能。对于生成代码和AI续写内容的请求,Cursor通过向服务器发送包含选中文本、指令类型等信息的POST请求实现。聊天模式下,Cursor通过简单的请求实现向AI提问。编辑器与AI之间的双向通信通过文本事件流技术实现,确保流畅的交互体验。然而,Cursor的核心后台实现尚未开源,这构成了其商业策略的一部分。

       Cursor未来面临的挑战包括维持竞争优势、优化用户体验、解决与VSCode生态的兼容性问题,并进一步完善其核心功能。随着技术的不断进步与迭代,Cursor有望在编程辅助领域发挥更大的作用。尽管当前存在一些限制和不足,如代码质量、文档建设和后台实现的非开源性,但Cursor在编程辅助工具领域展现出了创新潜力,值得持续关注。

Elasticsearch:使用 OpenAI、LangChain 和 Streamlit 的基于 LLM 的 PDF 摘要器和 Q/A 应用程序

       您是否曾感到信息过载?在众多书籍和文档面前,时间显得如此宝贵。OpenAI、LangChain 和 Streamlit 可助你创建一个能总结 PDF 并回答问题的自定义聊天机器人。

       本文将展示如何构建端到端应用程序。项目涉及以下内容:

       Open AI:专注于开发人工智能技术的组织,研究自然语言处理、强化学习、机器人技术等领域。

       创建 OpenAI 密钥:在 openai.com/ 网站上登录并生成唯一 API 密钥,用于访问 OpenAI API。

       LangChain:一个用于构建上下文感知推理应用程序的框架,提供工具、库和预构建组件。

       Streamlit:一个开源 Python 库,用于构建 Web 应用程序,简化创建交互式 Web 应用程序的过程。

       前提条件:安装 Elasticsearch 及 Kibana,使用 pip 安装 Python 依赖包,创建环境变量文件。

       创建应用:在项目根目录下创建 app.py 文件,导入依赖项,创建 SideBar 和上传 PDF 文件功能。

       提前文本并写入到 Elasticsearch:提取 PDF 文件内容,分割文本,生成嵌入,构建知识库。

       连接 LLM OpenAI:初始化并利用 OpenAI 语言模型创建问答系统,对输入文档和用户问题执行模型,显示生成的响应。

       完整的 app.py 代码和项目源码可在 GitHub - liu-xiao-guo/PDF-Summarizer-End-to-End-Project 下载。

openai开源了什么

       OpenAI开源了多个重要的项目和工具。

       首先,OpenAI开源了其核心的深度学习模型,如GPT系列。GPT(Generative Pre-trained Transformer)是一种基于Transformer架构的预训练语言模型,能够生成高质量的自然语言文本。OpenAI通过开源GPT系列模型,使得开发者能够轻松地在自己的应用中使用这些强大的语言模型,从而推动了自然语言处理领域的发展。例如,开发者可以利用GPT模型来构建智能聊天机器人,提供更为自然和智能的对话体验。

       其次,OpenAI还开源了其用于模型训练和推理的工具和库。这些工具和库为开发者提供了丰富的功能和灵活性,使他们能够高效地训练自己的深度学习模型,并将其应用于各种实际场景中。例如,OpenAI提供了易于使用的API,开发者可以通过这些API轻松调用OpenAI的模型进行推理,从而加快了应用开发的进程。

       最后,OpenAI还致力于开源文化和社区的建设。他们不仅公开了模型的源代码和训练数据,还积极与社区分享技术进展、研究方法和最佳实践。这种开源精神极大地促进了人工智能领域的知识共享和技术创新。通过开源,OpenAI为全球的研究者、开发者和创新者搭建了一个共同进步的平台,推动了人工智能技术的快速发展和广泛应用。

       总的来说,OpenAI通过开源其核心模型、工具库以及积极参与开源社区建设,极大地推动了人工智能领域的发展和进步。这些开源项目不仅为开发者提供了强大的技术支持,还为全球范围内的研究和创新活动注入了强大的动力。随着OpenAI在开源方面的不断努力,我们有理由相信,未来的人工智能技术将更加先进、开放和普惠。