皮皮网

皮皮网

【互动小程序游戏源码】【礼品 源码】【飞飞 源码】hadoop源码解析

时间:2024-12-29 18:39:54 分类:探索

1.深入理解 Hadoop (七)YARN资源管理和调度详解
2.Hadoop 的源码 Lists.newArrayList和正常的 new ArrayList()有什么区别?
3.Hadoop学习之fileSystem.delete方法

hadoop源码解析

深入理解 Hadoop (七)YARN资源管理和调度详解

       Hadoop最初为批处理设计,其资源管理与调度仅支持FIFO机制。解析然而,源码随着Hadoop的解析普及与用户量的增加,单个集群内的源码应用程序类型与数量激增,FIFO调度机制难以高效利用资源,解析互动小程序游戏源码也无法满足不同应用的源码服务质量需求,故需设计适用于多用户的解析资源调度系统。

       YARN采用双层资源调度模型:ResourceManager中的源码资源调度器分配资源给ApplicationMaster,由YARN决定;ApplicationMaster再将资源分配给内部任务Task,解析用户自定。源码YARN作为统一调度系统,解析满足调度规范的源码礼品 源码分布式应用皆可在其中运行,调度规范包括定义ApplicationMaster向RM申请资源,解析AM自行完成Container至Task分配。源码YARN采用拉模型实现异步资源分配,RM分配资源后暂存缓冲区,等待AM通过心跳获取。

       Hadoop-2.x版本中YARN提供三种资源调度器,分别为...

       YARN的队列管理机制包括用户权限管理与系统资源管理两部分。CapacityScheduler的核心特点包括...

       YARN的更多理解请参考官方文档:...

       在分布式资源调度系统中,资源分配保证机制常见有...

       YARN采用增量资源分配,避免浪费但不会出现资源饿死现象。YARN默认资源分配算法为DefaultResourceCalculator,专注于内存调度。飞飞 源码DRF算法将最大最小公平算法应用于主资源上,解决多维资源调度问题。实例分析中,系统中有9个CPU和GB RAM,两个用户分别运行两种任务,所需资源分别为...

       资源抢占模型允许每个队列设定最小与最大资源量,以确保资源紧缺与极端情况下的需求。资源调度器在负载轻队列空闲时会暂时分配资源给负载重队列,仅在队列突然收到新提交应用程序时,调度器将资源归还给该队列,避免长时间等待。

       YARN最初采用平级队列资源管理,订购 源码新版本改用层级队列管理,优点包括...

       CapacityScheduler配置文件capacity-scheduler.xml包含资源最低保证、使用上限与用户资源限制等参数。管理员修改配置文件后需运行"yarn rmadmin -refreshQueues"。

       ResourceScheduler作为ResourceManager中的关键组件,负责资源管理和调度,采用可插拔策略设计。初始化、接收应用和资源调度等关键功能实现,RM收到NodeManager心跳信息后,向CapacityScheduler发送事件,调度器执行一系列操作。std源码

       CapacityScheduler源码解读涉及树型结构与深度优先遍历算法,以保证队列优先级。其核心方法包括...

       在资源分配逻辑中,用户提交应用后,AM申请资源,资源表示为Container,包含优先级、资源量、容器数目等信息。YARN采用三级资源分配策略,按队列、应用与容器顺序分配空闲资源。

       对比FairScheduler,二者均以队列为单位划分资源,支持资源最低保证、上限与用户限制。最大最小公平算法用于资源分配,确保资源公平性。

       最大最小公平算法分配示意图展示了资源分配过程与公平性保证。

Hadoop 的 Lists.newArrayList和正常的 new ArrayList()有什么区别?

       这个方法在google工具类中也有,源码内容如下

public static <E> ArrayList<E> newArrayList() {

           return new ArrayList();

       }

       内容是差不多的,唯一的好处就是可以少写泛型的部分。

       这个方法有着丰富的重载:

Lists.newArrayList(E... elements)

       Lists.newArrayList(Iterable<? extends E> elements)

       Lists.newArrayList(Iterator<? extends E> elements)

       还有很多前缀扩展方法:

List<T> exactly = Lists.newArrayListWithCapacity();

       List<T> approx = Lists.newArrayListWithExpectedSize();

       使得函数名变得更有可读性,一眼就看出方法的作用。

       但是查看源码发现官方的注解里头是这么写的:

       Creates a mutable, empty ArrayList instance (for Java 6 and earlier).

       创建一个可变的空ArrayList(适用于java 6及之前的版本)

       Note for Java 7 and later: this method is now unnecessary and should

       be treated as deprecated. Instead, use the ArrayList constructor

       directly, taking advantage of the new "diamond" syntax.

       针对java 7及之后版本,本方法已不再有必要,应视之为过时的方法。取而代之你可以直接使用ArrayList的构造器,充分利用钻石运算符<>(可自动推断类型)。

Hadoop学习之fileSystem.delete方法

       Hadoop中FileSystem.delete方法用于删除文件或目录。该方法接受两个参数:一个Path,代表要删除的路径;一个布尔值,表示是否进行递归删除。

       在源码中,该方法的实现逻辑如下。当指定删除的目标路径为文件时,无论参数recursive为true还是false,方法都能正常执行。而当目标路径为目录时,情况则有所不同。若参数recursive为true,则会递归地删除目录内的所有子文件和子目录,直至目录被空目录所替代,最终被删除。若参数recursive为false,则仅删除空目录,若目录内有文件或子目录,将抛出异常。因此,在使用此方法时,需根据实际情况合理设置参数,避免误删重要文件或目录。

       举例说明,若要删除名为"example.txt"的文件,可以这样调用方法:FileSystem.delete(new Path("/path/to/example.txt"), false)。若要删除名为"example"的目录及其内容,调用方法时需设置recursive为true,如:FileSystem.delete(new Path("/path/to/example"), true)。

       总结而言,FileSystem.delete方法提供了删除文件或目录的便利功能,通过合理设置参数,可灵活实现不同场景下的删除需求。在实际应用中,需根据目标路径的性质和预期结果,正确使用此方法,以避免不必要的数据丢失或系统异常。