1.LR最详细推导
2.LR逻辑回归模型的模型原理、公式推导、源码Python实现和应用
3.逻辑回归(Logistic Regression)+代码模板
4.机器学习-LR
5.空间计量模型——模型选择:LM检验、模型Hausman检验、源码LR检验、模型Wald检验(实操+代码)
6.LR-融合多种特征的源码文本转盲文源码推荐模型
LR最详细推导
LR,即Logistic Regression Classifier,模型起源于线性回归,源码但关键在于其假设函数g(z)的模型运用。g(z)将线性求和结果通过sigmoid函数映射到0和1之间,源码形成非线性预测。模型sigmoid函数的源码导数特性是g(z)(1-g(z)),在后续推导中会用到。模型
当扩展到多维空间并加入参数时,源码LR的模型表达式变为预测二元分类的模型。样本间的独立性假设使得整体样本的概率为单个样本概率的乘积。在此基础上,我们引入似然的概念,描述已知结果下的不同条件概率,通过连乘表达。
为了求解模型参数,通常会遇到连乘求导的难题。为简化求解,我们采取对数化处理,将极大似然函数转换为log似然,便于使用梯度下降或牛顿法进行优化。log似然函数的推导涉及链式法则,包括g(z)的导数和样本权重的乘积项。
至于LR的损失函数,许多人可能从交叉熵开始理解。实际上,极大似然和最小化交叉熵损失在伯努利分布下是等价的。至于为何选择交叉熵而非欧氏距离,这是通达信神奇均线买卖源码因为交叉熵作为损失函数保证了凸优化问题,而欧氏距离可能导致非凸优化,这与优化问题的最优解相关。
LR逻辑回归模型的原理、公式推导、Python实现和应用
深入探索LR的魔力:逻辑回归模型的奥秘与实战应用 在机器学习的璀璨星河中,逻辑回归(Logistic Regression, LR)如同一颗璀璨的明珠,以其简洁的原理和强大的解释能力赢得了广泛应用。无论是个性化推荐系统,还是精准广告投放,它都是不可或缺的基石。本文将带领你从伯努利分布和逻辑函数的底层原理出发,逐一揭开LR模型的面纱,包括其假设、训练流程、特征工程,以及Python、Sklearn和TensorFlow的实战演示。LR基础:构筑理解的基石
首先,我们回顾伯努利分布和逻辑函数,它们是构建LR模型的基石。伯努利分布描述了事件发生的概率,而逻辑函数则将连续的数值映射到0-1之间,为二分类问题提供决策边界。接着,我们会探讨回归分析和线性回归模型,这些概念为理解LR的线性预测打下基础。LR原理:数学之美与训练策略
LR的核心在于其假设:线性关系和对数几率函数。我们将会探讨损失函数,如交叉熵,它是衡量模型预测与真实值差异的关键。训练过程中,通过梯度下降法调整参数,优化模型性能。Dnf60版本源码包特征工程的巧妙运用,能使模型在复杂数据中找到更精确的决策路径。实战演练:Python与机器学习库的整合
让我们通过Python的numpy和sklearn库,一步步实现LR的预测功能。首先,我们定义loadData、predict和GD函数,导入糖尿病数据集进行训练和测试。在sklearn中,我们轻松地构建LR模型,对糖尿病数据进行分析,其准确率高达.%,展示了模型的强大实力。对比与扩展:LR的边界与可能性
与线性回归比较,LR在处理非线性关系时更具灵活性。多项逻辑回归和Softmax模型的引入,使LR从二分类扩展到多分类问题,展现了模型的拓展性和适应性。在推荐系统和广告预估中,LR的这些特性显得尤为关键。代码实例与深度解析
通过混淆矩阵和ROC曲线,我们进一步观察LR在糖尿病数据上的具体表现,以及AUC值如何衡量其分类性能。TensorFlow 2.0的示例展示了如何将LR模型迁移到深度学习框架,实现了对乳腺癌数据的高效分类。总结与展望
逻辑回归,以其独特的优点,成为机器学习领域的常青树。它在实际应用中的表现让人赞叹,但同时也需要我们理解其局限性。通过理解LR,我们能更好地把握其他复杂模型,如GBDT和FM,唯品会的溯源码怎么查从而在数据科学的道路上走得更远。 参考文献:1. 陈希孺 - 概率论与数理统计
2. 李航 - 统计学习方法(第2版)
逻辑回归,这个看似简单却蕴含深意的模型,正在等待你去发掘它的无穷魅力。现在,就让我们一起踏上探索之旅,揭开逻辑回归的神秘面纱吧!
逻辑回归(Logistic Regression)+代码模板
逻辑回归(LR)在数据挖掘领域是常用的分类模型,主要用于解决二分类问题,例如垃圾邮件判断、经济预测、疾病诊断等。LR基于伯努利分布,利用线性回归模型结合Sigmod函数构建公式,并通过梯度下降求解损失函数,以此解决二分类问题。LR同样适用于多分类问题。
理解逻辑回归的关键点在于它等于线性回归与Sigmod函数的结合。Sigmod函数确保当自变量趋向无穷时,因变量接近0;当自变量趋向无穷大时,因变量接近1。将线性回归模型与Sigmod函数结合后,函数映射至[0,1]区间内,小于0.5预测为0,大于0.5预测为1。
逻辑回归求解过程首先使用极大似然函数作为损失函数,然后通过梯度下降法求解。梯度下降法包括批梯度下降(Batch GD)、随机梯度下降(Stochastic GD)和小批量梯度下降(Mini-Batch GD)三种方式。选择合适的下降方式取决于数据量和计算资源。
逻辑回归的分类本质是回归,预测值为连续变量,通过设定阈值(通常为0.5)将预测值分为两类。通达信猎鹰歼狐公式源码与线性回归的区别在于,线性回归预测结果无限制,逻辑回归通过Sigmod函数限制预测结果在[0,1]区间内。
逻辑回归求解损失函数的过程依赖梯度下降法,逐步逼近最优解。梯度下降法的效率和选择取决于梯度下降的类型和优化策略。
逻辑回归使用Sigmod函数的原因在于,Sigmod函数将线性回归预测值的无限制范围限制为[0,1],使预测结果更加准确和适用。
极大似然函数在逻辑回归中用于衡量模型参数的准确性,通过优化极大似然函数来提高模型预测性能。
逻辑回归的优缺点分析如下:优点在于模型简单、易于理解、计算资源需求低,且适用于线性可分数据。缺点包括可能对非线性数据拟合能力较差、容易出现过拟合问题,以及在数据量较大时计算复杂度较高。
以下是逻辑回归代码模板(参考Udemy):
python
import numpy as np
def sigmoid(z):
return 1 / (1 + np.exp(-z))
def cost_function(theta, X, y):
m = len(y)
h = sigmoid(X @ theta)
J = -(1/m) * np.sum(y * np.log(h) + (1 - y) * np.log(1 - h))
return J
def gradient_descent(X, y, theta, alpha, num_iters):
m = len(y)
J_history = np.zeros(num_iters)
for iter in range(num_iters):
h = sigmoid(X @ theta)
theta = theta - (alpha/m) * (X.T @ (h - y))
J_history[iter] = cost_function(theta, X, y)
return theta, J_history
# 初始化参数,特征,目标变量,学习率,迭代次数
theta = np.zeros(X.shape[1])
alpha = 0.
num_iters =
# 调用梯度下降法进行优化
theta, J_history = gradient_descent(X, y, theta, alpha, num_iters)
机器学习-LR
全称:对数几率回归,logistic regression,简称:LR,二分类模型,应用极大似然估计模型参数,使用交叉熵(cross entropy,简称:CE)作为损失函数。
对数几率公式:[公式] ,值域: [公式] ,是 [公式] 函数(图形和字母s一样的函数)的一种。图像如下:
导数:[公式] ,值域: [公式] ,图像如下:
数据集:[公式] ,其中 [公式] , [公式]
LR模型:[公式]
正样本的概率:[公式]
负样本的概率:[公式]
似然函数:[公式]
对数似然:
[公式]
上式是关于[公式] 是高阶可导连续凸函数,可以使用数值优化算法如梯度下降法、牛顿法等可求得最优解。
以梯度下降法为列:
一阶导数:[公式]
[公式] 轮迭代更新公式:
[公式]
为什么使用[公式] 函数?连续、任意阶可导、值域在0-1之间、可以作为概率。
LR能否解决非线性问题?能,需要引入核技巧。
为什么LR用CE作为损失函数而不是MSE?MSE比CE梯度更新慢、MSE受到[公式] 导数影响容易梯度消失。
为什么常常要做特征组合(特征交叉)?LR模型属于线性模型,线性模型不能很好处理非线性特征,特征组合可以引入非线性特征,提升模型的表达能力。
如何解决低维不可分(非线性)问题?通过特征变换的方式把低维空间转换到高维空间,而在低维空间不可分的数据,到高维空间中线性可分的几率会高一些。具体方法:核函数,如:高斯核,多项式核等等。
LR与最大熵模型MaxEnt的关系?没有本质区别。LR是最大熵对应类别为二类时的特殊情况,也就是当LR类别扩展到多类别时,就是最大熵模型。
如何解决多分类?
参考:《统计学习方法》第二版 李航 《机器学习》周志华
空间计量模型——模型选择:LM检验、Hausman检验、LR检验、Wald检验(实操+代码)
空间计量模型的选择在实证分析中至关重要。本文通过年至年的模拟面板数据,详细展示了在Stata中进行LM检验、Hausman检验、LR检验和Wald检验的步骤,并提供了部分代码供读者直接使用。 首先,模型的基本形式为: Y = ρWY + Xβ + θWX +ε,其中Y、X、W、ρ、θ和ε分别代表变量和系数。 模型选择的关键在于判断模型类型,如SAR、SEM或SDM。实操部分从面板数据格式介绍开始,以巴中市的年数据为例,每个样本包括城市、时间变量和控制变量。 在Stata中,我们通过以下步骤进行检验:LM检验: 扩大空间权重矩阵后,通过代码检查P值,小于0.1则可能选择SAR或SEM。当两者都通过,SDM成为首选,需进一步确认。
Hausman检验: 比较固定效应和随机效应,P值小于0.1则选择固定效应模型,如空间杜宾模型。
LR检验: 通过对比不同固定效应模型,P值小于0.1则推荐SDM的双固定效应模型。
Wald检验: 确保SDM不会退化为其他模型,通过代码验证。
文章最后提供了完整的Stata代码示例,建议读者将其复制到do文件中运行。请注意,所有代码和结果需根据实际数据进行调整。本文旨在提供一个实践指南,如有疑问或错误,欢迎交流和指正。LR-融合多种特征的推荐模型
LR模型,作为基于线性回归的推荐算法,通过学习用户点击行为来预测点击率(CTR),其核心公式如下:
P(喜欢) = 1 / (1 + e^(-w_1 * feature_1 - w_2 * feature_2 - ...))
其中,P(喜欢) 表示用户喜欢某个标的物的概率,w 为权重参数,feature 为对应的特征值。在工业实践中,如Google的FTRL和阿里巴巴的分片线性模型,它被广泛应用到实时推荐排序中。
与协同过滤和矩阵分解不同,逻辑回归将推荐视为分类问题,通过预测正反馈行为(如点击)的概率对物品进行排序。它能综合多种特征(如用户年龄、性别、物品属性等)生成全面的推荐结果,是推荐领域的重要工具。虽然看似简单,但背后涉及伯努利分布、极大似然估计和梯度下降等概念。
推荐过程包括:首先,将各类特征转化为数值向量;接着,训练模型以优化点击率,确定权重参数;服务阶段,输入特征向量得到预测概率,然后根据概率对候选物品排序生成推荐列表。
逻辑回归的优势包括数学基础的合理性、易于解释、工程应用的便捷性,以及内存占用低等。然而,其表达能力有限,难以处理复杂非线性数据,且对特征工程要求较高,这促使了更复杂模型的出现,如FM和深度学习模型。
LR模型参数详解
逻辑回归模型参数详解
逻辑回归模型的关键参数包括正则化选择(penalty)、损失函数优化算法(solver)、样本比例调整(class_weight)等。其中,penalty参数决定了模型采用的正则化方式,可选值为l1和l2,分别对应l1正则化和l2正则化。选择正则化有助于防止过拟合,l2正则化一般情况适用,当效果不佳时考虑使用l1正则化。l1正则化还适用于特征选择,有助于过滤不重要的特征。
调整参数penalty会影响损失函数优化算法的选择,对于l2正则化,可选优化算法包括‘newton-cg’、‘lbfgs’、‘liblinear’、‘sag’,而l1正则化仅支持‘liblinear’。l1正则化的损失函数不连续可导,限制了其他优化算法的使用。
另一参数dual指示是否将原问题转换为对偶问题,适用于样本量较小的场景,计算复杂度低。
tol参数设定了损失函数收敛的条件,值默认为0.,表示两步损失差值小于0.时停止迭代。C参数是正则化系数,值越小表示正则化强度越大,有助于防止过拟合。
fit_intercept参数决定是否在模型中加入截距项,默认为True。class_weight参数调整正负样本的权重,可直接设值或使用'balanced',根据样本数量自动调整权重。
random_state参数用于设置随机种子,保证结果的可复现性;solver参数指定了损失函数的优化方法,如liblinear、lbfgs、newton-cg和sag等,选择依据正则化类型。max_iter参数限制了最大迭代次数,default为。multi_class参数定义了分类方法,包括'ovr'和'multinomial',分别适用于二分类和多分类问题。
verbose参数控制是否输出模型运算过程中的信息,默认为False。warm_start参数指示是否使用上次模型结果作为初始化,default为False。n_jobs参数指定并行运算数量,默认为1,设置为-1则利用全部CPU核。