1.libevԴ??
2.[libco] 协程库学习,测试连接 mysql
3.libevent、libev框架介绍
4.史上最详细的网络编程实战教程
5.Gevent源码剖析(二):Gevent 运行原理
libevԴ??
Libevent
Libevent 是一个基于事件驱动模型的非阻塞网络库,用于构建高速、可移植的非阻塞 IO 应用。广泛应用于 memcached、魔兽世界源码泄露Vomit、Nylon、Netchat 等项目中,作为底层网络库,用于实现 TCP 或 HTTP 服务。Libevent 的 GitHub 源码可访问。
Libev
Libev 是由 Marc Lehmann 独立完成的,对不同系统非阻塞模型进行简单封装,解决了不同 API 之间的不兼容问题,保证程序在大多数 *nix 平台上运行。Libev 支持类 UNIX 系统的多种 I/O 多路复用模型,如 select、poll、epoll、kqueue、evports 等,但对于 Windows 的支持仅限于 select 模型,效率较低,性能不如 Libuv 封装的linux mhash源码安装 IOCP。Libev 目标是修复 Libevent 的一些设计问题,如避免使用全局变量,提供更高效的事件类型管理。
Libuv
Libuv 是一个跨平台、高性能、事件驱动的异步 IO 库,用 C 语言编写,封装了不同平台底层的高性能 IO 模型,如 epoll、kqueue、IOCP、event ports,具有高度可移植性。Libuv 为 Node.js 设计,但因其高效模型逐渐被其他语言和项目采纳,用于底层库,如 Luvit、Julia、uvloop、pyuv 等。
Libevent、Libev、Libuv 比较
根据 GitHub 星标数,Libuv 的pb源码 社保公积金影响力最大,其次是 Libevent,Libev 关注较少。在优先级、事件循环、线程安全等方面,Libuv 更为现代,支持多种平台和 IO 模型,提供了更优的性能和功能。Libevent 和 Libev 分别针对不同平台和需求进行优化,Libev 旨在修复 Libevent 的问题。性能和可移植性方面,Libuv 优于 Libevent 和 Libev。
异步 IO 实现
目前 Linux 异步 IO 实现有原生异步 IO 和多线程模拟异步 IO 两种方式。原生异步 IO 支持特定场景,但不充分利用 Page cache;多线程模拟异步 IO 方式如 Glibc AIO、libeio、io_uring 等,提供更广泛的适用场景。
[libco] 协程库学习,测试连接 mysql
在异步框架使用中,我曾因为性能优势转而采用 libev,但由于新人学习成本高和逻辑被打散为状态机的复杂性,生产效率受到一定影响。寻求解决方案,征途sf辅助源码我决定学习 libco,一个轻量级的协程库,旨在实现同步方式的异步功能,以保持性能优势并提高代码可读性和维护性。
深入学习 libco 的过程中,我首先对它的源码结构进行了梳理,以清晰地理解其内部逻辑和工作原理。为了测试 libco 的功能,我使用 mysql 进行了连接尝试。通过源码分析和代码修改,我成功实现了对 mysqlclient 阻塞接口的 hook,具体方法包括使用 strace 和 gdb 进行底层调用跟踪和断点调试。
测试结果显示,libco 在单进程单线程环境下,通过多个协程实现了“并发”处理,随着协程数量的增加,系统并发能力显著提升,符合预期。尽管实际应用中用户数量通常较多,单个用户的 SQL 命令较少,但这验证了 libco 在高并发场景下的高效处理能力。
总结而言,通过学习和实践 libco,我不仅掌握了轻量级协程库的activity启动流程源码使用,还深入理解了其高效实现异步功能的机制,为提高系统性能和简化代码逻辑提供了新的途径。在后续的项目开发中,我会继续深入探索 libco 的潜力,以优化现有系统架构。
参考资料链接如下:
libevent、libev框架介绍
探索高性能事件驱动编程的世界,libevent和libev作为C语言中的重要库,以简洁的接口和跨平台兼容性闻名。它们在事件管理、网络IO、定时任务和信号处理方面提供了强大的支持,尤其在简化跨操作系统事件处理方面独具优势。libevent:灵活的事件库
libevent的核心在于其event_base结构,它是事件检测的基石,通过`event_base_new()`创建并初始化,`event_base_free()`释放资源。该库支持Linux的epoll、Mac的kqueue和Windows的iocp,用户只需关注事件处理逻辑,底层的IO细节由libevent隐藏。事件管理与封装
libevent的封装层次分明,网络操作与问题解决分离,用户只需处理业务逻辑。事件检测通过底层高效实现,如epoll,用户只需关注如何在回调中进行IO操作。例如,`event_new()`用于创建事件对象,`event_base_loop()`驱动事件循环,直到事件激活或循环结束。libev的改进与libuv的诞生
libev在libevent的基础上,通过移除全局变量,采用回调传递上下文,以及使用最小四叉堆优化计时器,进一步提升性能。然而,对于Windows的支持不足催生了libuv,后者被node.js采用,优化了Windows上的多路IO处理。安装与使用
安装libevent的步骤包括下载源码、配置、编译和安装。在使用时,确保链接到 `-levent` 库,如在主函数中设置`event_base`结构并调用`event_base_loop()`。示例代码
通过以下代码片段,展示了基础的事件监听和回调处理,以及如何创建`event_base`并进入事件循环:```c
struct event_base *base = event_base_new();
event_base_set_timeout(base, -1, EV_TIMEOUT, timeout_handler, NULL); // 定时器处理
event_base_set(&listenfd, EV_READ|EV_PERSIST, accept_handler, base); // 监听事件
event_base_dispatch(base); // 进入事件循环
event_base_free(base);
```
高级操作:bufferevent
libevent的`bufferevent`提供了更高级别的IO操作,例如`bufferevent_socket_new()`用于基于已存在的socket创建事件监听器,支持BEV_OPT_CLOSE_ON_FREE和BEV_OPT_THREADSAFE等选项。事件回调如读写、异常处理等,是事件驱动编程的核心内容。 在处理网络连接时,`bufferevent_read`和`bufferevent_write`用于读取和写入数据,`bufferevent_enable`控制回调触发。`evconnlistener`用于监听连接请求,简化了新连接的接纳和处理。 总结来说,libevent和libev为开发者提供了强大的事件驱动框架,无论是基础的网络IO还是高级的定时任务管理,都以易用性和性能为首要目标。通过合理的封装和底层优化,使得开发人员能够专注于业务逻辑,而无需过多关注底层实现的复杂性。史上最详细的网络编程实战教程
本文通过介绍libhv——一个比libevent、libev、libuv更易用的跨平台国产网络库,旨在提供网络编程实战教程,帮助读者更好地理解TCP/UDP/SSL/HTTP/WebSocket网络编程。libhv提供了带非阻塞IO和定时器的事件循环,适用于开发TCP/UDP/SSL/HTTP/WebSocket客户端/服务端。
项目地址:github.com/ithewei/libhv
码云镜像:gitee.com/libhv/libhv.gitee.com
QQ技术交流群:
libhv博客专栏:hewei.blog.csdn.net/cat
libhv源码分析:blog.csdn.net/qu/ca
libhv教程--目录
libhv是一个跨平台网络库,适用于开发TCP/UDP/SSL/HTTP/WebSocket客户端/服务端。
libhv教程--介绍与体验
libhv是一个高性能事件循环库,寓意High-performance event loop library(高性能事件循环库)。Linux与mac用户可直接执行getting_started.sh脚本体验libhv编写的作为客户端测试。
libhv教程--创建一个简单的TCP客户端
完整TCP/UDP客户端程序参考examples/nc.c,c++版本示例代码见evpp目录下的TcpClient_test.cpp。
libhv教程--创建一个简单的UDP服务端
以UDP echo server为例,使用libhv创建UDP服务端。编译运行后,可使用nc作为客户端测试。
libhv教程--创建一个简单的UDP客户端
完整TCP/UDP客户端程序参考examples/nc.c,c++版本示例代码见evpp目录下的UdpClient_test.cpp。
libhv教程--创建一个简单的HTTP服务端
以HTTP协议为例,使用libhv创建HTTP服务端。c版本示例代码参考examples/http_server_test.cpp,c++版本示例代码参考evpp目录下的HttpServer_test.cpp。
libhv教程--创建一个简单的HTTP客户端
完整HTTP客户端示例代码参考examples/curl.cpp,模拟实现了curl命令行程序。
libhv教程--创建一个简单的WebSocket服务端
以WebSocket协议为例,使用libhv创建WebSocket服务端。示例代码参考examples/websocket_server_test.cpp。
libhv教程--创建一个简单的WebSocket客户端
WebSocket客户端示例代码参考examples/websocket_client_test.cpp。
libhv教程--实现一个纯C版jsonrpc框架
使用libhv实现一个行内的jsonrpc框架,借助libhv提供的接口hio_set_unpack设置拆包规则,大大节省了处理粘包与分包的成本。
libhv教程--实现一个C++版protorpc框架
实现一个行内的C++版protorpc框架,使用evpp模块+protobuf实现。
创作不易,如果你觉得不错,请在github上star下吧。
Gevent源码剖析(二):Gevent 运行原理
Gevent的运行原理在python2.7.5版本下,涉及多个关键概念。简单来说,它通过Greenlet类和Hub事件循环实现并发执行。以下是核心步骤:
首先,通过导入gevent模块,引入其初始化设置,greenlet的运行函数通过gevent.spawn()方法注册到Hub,这个过程包括获取Hub实例、初始化greenlet并保存函数和参数。get_hub()利用线程局部存储保证Hub的多线程一致性。
接着,greenlet通过g.start()注册到事件循环,回调事件由switch()控制,而不是直接运行函数,实现了协程的切换。Gevent提供了join()和joinall()两个入口,其中joinall()控制了整个流程。
在详细流程中,iwait()函数扮演重要角色,通过创建Waiter对象,将协程的switch()链接到目标,通过waiter.get()控制协程执行和返回。Hub事件循环与运行协程通过waiter.get()和waiter.switch()协同工作,实现了并发执行。
目标协程的执行涉及事件循环的启动,通过Cython调用libev库执行。目标函数在run()中执行,并通过_report_result()和_report_error()处理结果或异常。"绿化"函数是实现并发的关键,它们允许在等待I/O操作时释放控制权,从而实现多任务并发。
总的来说,Gevent的运行涉及复杂的协程调度和事件驱动,虽然本文仅触及表面,但其背后的并发机制和技术细节更为丰富,包括异常处理和大量"绿化"函数的使用,这将在后续深入探讨。