欢迎访问皮皮网官网
皮皮网

【ios 微博 源码】【flash mx 源码】【lfm算法 源码】内核源码生成_内核源码生成build

时间:2025-01-04 08:42:08 分类:探索 来源:ext 项目源码

1.?内核内核ں?Դ??????
2.鸿蒙内核源码分析(编译过程篇) | 简单案例窥视编译全过程
3.linux内核$(kallsyms.o)详解续篇 --- 内核符号表的生成和查找过程
4.v51.04 鸿蒙内核源码分析(ELF格式) | 应用程序入口并非main | 百篇博客分析OpenHarmony源码
5.Linux内核源码解析---万字解析从设计模式推演per-cpu实现原理

内核源码生成_内核源码生成build

?ں?Դ??????

       在Linux内核编译过程中,通常使用make命令来生成新的源码源码内核。

拓展知识:

       make命令是生成生成一个自动化构建工具,它可以根据Makefile文件中的内核内核规则和依赖关系来生成目标文件。在Linux内核编译中,源码源码Makefile文件包含了编译内核所需的生成生成ios 微博 源码规则和依赖关系。当您在终端中运行make命令时,内核内核它会根据Makefile文件中的源码源码规则来构建内核,并生成新的生成生成内核镜像文件。

       要生成新的内核内核内核,您通常需要先准备好所需的源码源码工具和环境,并确保内核源代码的生成生成正确配置和下载。然后,内核内核在终端中进入内核源代码的源码源码根目录,并运行make命令。生成生成make命令会根据Makefile文件中的规则和依赖关系来构建内核,并生成新的内核镜像文件。

       需要注意的是,在编译内核之前,您需要确保系统已经安装了必要的编译工具和依赖库。此外,您还需要根据实际情况配置内核源代码,例如选择正确的体系结构、配置内核参数等。这些步骤可能会因内核版本和配置的不同而有所差异。

       总之,在Linux内核编译过程中,使用make命令生成新的内核是一种常见的做法。通过运行make命令并根据Makefile文件中的flash mx 源码规则和依赖关系来构建内核,可以生成新的内核镜像文件。

鸿蒙内核源码分析(编译过程篇) | 简单案例窥视编译全过程

       一个 .c 源文件的编译过程,从源文件开始,经过预处理、编译、汇编、链接,最终生成可执行文件。

       GCC 是 GNU 编译器套件,用于多种编程语言的编译。

       以 main.c 为例,编译过程分为以下几个步骤:

       1. 预处理:处理源代码中的预处理指令,生成 main.i 文件。此步骤主要处理 # 开始的指令。

       2. 编译:将预处理后的文件进行词法、语法和语义分析,优化后生成汇编代码,即 main.s。

       3. 汇编:将汇编代码转化为机器指令,生成机器码文件,main.o 为主要目标文件。

       4. 链接:链接器 ld 将所有目标文件合并,解决符号和库依赖关系,生成可执行文件。

       执行程序:运行可执行文件,执行程序。

       在链接阶段,可能会发现 s_inter_init() 和 s_exter_no_init() 之间的lfm算法 源码地址只相差两个字节,而 int 变量应为四个字节。这是由于 GCC 在链接过程中使用了重定位,将符号引用与实际的内存地址关联,从而优化内存使用和性能。这种重定位在编译和链接阶段进行,确保程序在不同环境中运行时的一致性。

linux内核$(kallsyms.o)详解续篇 --- 内核符号表的生成和查找过程

       在内核中,维护着一张符号表,记录着内核中的所有符号,包括函数与全局变量的地址与名称。这张表嵌入在内核镜像中,供内核运行时随时查找符号名。通过调用__print_symbol,内核代码能打印出符号名。

       接下来,我们将详细解析内核符号表的生成与查找过程。

       系统映像文件与/proc/kallsyms的区别与联系

       系统映像文件(System.map)在编译内核时生成,记录了内核中的所有符号及其在内存中的虚拟地址。文件由scripts/mksysmap脚本生成,依赖于nm命令。系统映像文件的每条记录包括地址、符号类型与符号名。符号类型包括函数、全局变量等。

       而/proc/kallsyms文件是在内核启动后自动生成,位于/proc目录下,其代码实现于kernel/kallsyms.c。区别在于它包含了内核模块的jsf 项目源码符号列表,并且允许用户态访问,非内核常规操作。通常,我们只需关注_stext ~ _etext 和 _sinittext ~ _einittext之间的符号。

       内核符号表的生成与查找

       内核在运行过程中可能需要查找地址对应的函数名,如Oops或调试信息输出。但内核并未依赖System.map或/proc/kallsyms文件,而是通过vmlinux中的符号表(.tmp_vmlinux2.o)实现快速查找。

       内核符号表结构

       内嵌符号表通过scripts/kallsyms工具生成,源码位于kallsyms.c。该表包含6个全局变量:kallsyms_addresses、kallsyms_num_syms、kallsyms_names、kallsyms_token_table、kallsyms_token_index与kallsyms_markers。其中,kallsyms_addresses记录所有符号地址,kallsyms_num_syms统计符号数量,kallsyms_names存放符号名,kallsyms_token_table与kallsyms_token_index用于压缩存储高频率字符串。

       压缩算法与优化

       内核使用压缩算法减少存储开销,将高频率字符串表示为token,并通过kallsyms_token_table与kallsyms_token_index实现压缩与解压。kallsyms_markers将符号每个分组,加速查找过程。

       查找过程实例与源码分析

       举例说明查找地址0xc对应的符号名。首先在System.map中定位到该地址位于__create_page_tables与__enable_mmu之间。在.tmp_kallsyms2.S文件中,迅雷插件源码利用二分查找定位符号地址,然后通过kallsyms_names与kallsyms_markers加速查找过程。最后解析压缩的符号名,得到结果为__enable_mmu。

       内核模块符号查找

       内核模块在启动时动态加载,其符号表存储在struct module结构中,所有已加载模块的struct module结构构成全局链表。查找内核模块中的符号时,调用kallsyms_lookup()函数,模块符号查找由get_ksymbol()函数完成。

v. 鸿蒙内核源码分析(ELF格式) | 应用程序入口并非main | 百篇博客分析OpenHarmony源码

       鸿蒙内核源码分析(ELF格式篇) | 应用程序入口并非main

       深入解析ELF格式与鸿蒙源码的关系,探寻应用程序入口的奥秘。本文将带你从一段简单的C代码开始,跟踪其编译成ELF格式后的神秘结构,揭秘ELF的组成与内部运作机制。

       以E:\harmony\docker\case_code_目录下的main.c文件为例,通过编译生成ELF文件,运行后使用readelf -h命令查看应用程序头部信息。了解ELF文件的全貌,从ELF头信息、段信息、段区映射关系、区表等多方面深入探讨。

       ELF格式文件由四大部分组成:头信息、段信息、段区映射关系和区表。头信息包含关键元数据,如文件类型、字节顺序、文件大小等;段信息描述了可执行代码和数据段的属性和位置;段区映射关系展示了段与区的关联;区表则存储了每个区的详细信息。

       通过readelf -l命令,可以观察到段信息及其在程序中的作用,如初始化数组、动态链接、栈区等。在运行时,不同段以特定方式映射到内存中,实现代码的加载和执行。

       在深入分析后,发现应用程序的真正入口并非通常理解的main函数,而是一个名为_start的特殊函数。这揭示了鸿蒙内核在启动时的执行流程,以及如何在ELF格式中组织和加载代码。

       本文以ELF格式为切入点,带你全面理解鸿蒙内核源码的组织结构与运行机制。通过百万汉字注解,带你精读内核源码,深入挖掘其地基。在Gitee仓(gitee.com/weharmony/ker...)同步注解,共同探索鸿蒙研究站(weharmonyos)的奥秘。

Linux内核源码解析---万字解析从设计模式推演per-cpu实现原理

       引子

       在如今的大型服务器中,NUMA架构扮演着关键角色。它允许系统拥有多个物理CPU,不同NUMA节点之间通过QPI通信。虽然硬件连接细节在此不作深入讨论,但需明白每个CPU优先访问本节点内存,当本地内存不足时,可向其他节点申请。从传统的SMP架构转向NUMA架构,主要是为了解决随着CPU数量增多而带来的总线压力问题。

       分配物理内存时,numa_node_id() 方法用于查询当前CPU所在的NUMA节点。频繁的内存申请操作促使Linux内核采用per-cpu实现,将CPU访问的变量复制到每个CPU中,以减少缓存行竞争和False Sharing,类似于Java中的Thread Local。

       分配物理页

       尽管我们不必关注底层实现,buddy system负责分配物理页,关键在于使用了numa_node_id方法。接下来,我们将深入探索整个Linux内核的per-cpu体系。

       numa_node_id源码分析获取数据

       在topology.h中,我们发现使用了raw_cpu_read函数,传入了numa_node参数。接下来,我们来了解numa_node的定义。

       在topology.h中定义了numa_node。我们继续跟踪DECLARE_PER_CPU_SECTION的定义,最终揭示numa_node是一个共享全局变量,类型为int,存储在.data..percpu段中。

       在percpu-defs.h中,numa_node被放置在ELF文件的.data..percpu段中,这些段在运行阶段即为段。接下来,我们返回raw_cpu_read方法。

       在percpu-defs.h中,我们继续跟进__pcpu_size_call_return方法,此方法根据per-cpu变量的大小生成回调函数。对于numa_node的int类型,最终拼接得到的是raw_cpu_read_4方法。

       在percpu.h中,调用了一般的read方法。在percpu.h中,获取numa_node的绝对地址,并通过raw_cpu_ptr方法。

       在percpu-defs.h中,我们略过验证指针的环节,追踪arch_raw_cpu_ptr方法。接下来,我们来看x架构的实现。

       在percpu.h中,使用汇编获取this_cpu_off的地址,代表此CPU内存副本到".data..percpu"的偏移量。加上numa_node相对于原始内存副本的偏移量,最终通过解引用获得真正内存地址内的值。

       对于其他架构,实现方式相似,通过获取自己CPU的偏移量,最终通过相对偏移得到pcp变量的地址。

       放入数据

       讨论Linux内核启动过程时,我们不得不关注per-cpu的值是如何被放入的。

       在main.c中,我们以x实现为例进行分析。通过setup_percpu.c文件中的代码,我们将node值赋给每个CPU的numa_node地址处。具体计算方法通过early_cpu_to_node实现,此处不作展开。

       在percpu-defs.h中,我们来看看如何获取每个CPU的numa_node地址,最终还是通过简单的偏移获取。需要注意如何获取每个CPU的副本偏移地址。

       在percpu.h中,我们发现一个关键数组__per_cpu_offset,其中保存了每个CPU副本的偏移值,通过CPU的索引来查找。

       接下来,我们来设计PER CPU模块。

       设计一个全面的PER CPU架构,它支持UMA或NUMA架构。我们设计了一个包含NUMA节点的结构体,内部管理所有CPU。为每个CPU创建副本,其中存储所有per-cpu变量。静态数据在编译时放入原始数据段,动态数据在运行时生成。

       最后,我们回到setup_per_cpu_areas方法的分析。在setup_percpu.c中,我们详细探讨了关键方法pcpu_embed_first_chunk。此方法管理group、unit、静态、保留、动态区域。

       通过percpu.c中的关键变量__per_cpu_load和vmlinux.lds.S的链接脚本,我们了解了per-cpu加载时的地址符号。PERCPU_INPUT宏定义了静态原始数据的起始和结束符号。

       接下来,我们关注如何分配per-cpu元数据信息pcpu_alloc_info。percpu.c中的方法执行后,元数据分配如下图所示。

       接着,我们分析pcpu_alloc_alloc_info的方法,完成元数据分配。

       在pcpu_setup_first_chunk方法中,我们看到分配的smap和dmap在后期将通过slab再次分配。

       在main.c的mm_init中,我们关注重点区域,完成map数组的slab分配。

       至此,我们探讨了Linux内核中per-cpu实现的原理,从设计到源码分析,全面展现了这一关键机制在现代服务器架构中的作用。

copyright © 2016 powered by 皮皮网   sitemap