本站提倡有节制游戏,合理安排游戏时间,注意劳逸结合。

【ubbo进阶源码】【合成篮球源码下载】【破产公司游戏源码】strack源码调试

2025-01-01 11:10:08 来源:时尚 分类:时尚

1.TC的源码详细使用方法
2.turboc2中的快捷键

strack源码调试

TC的详细使用方法

       给你个TC中文MAN,参考参考,调试也可以去我的源码BLOG看看,最近我也在学,调试

       名字

        tc - 显示/维护流量控制设置

       摘要

       tc qdisc [ add | change | replace | link ] dev DEV [ parent qdisc-id | root ] [ handle qdisc-id ] qdisc [ qdisc specific parameters ]

       tc class [ add | change | replace ] dev DEV parent qdisc-id [ classid class-id ] qdisc [ qdisc specific parameters ]

       tc filter [ add | change | replace ] dev DEV [ parent qdisc-id | root ] protocol protocol prio priority filtertype [ filtertype specific parameters ] flowid flow-id

       tc [-s | -d ] qdisc show [ dev DEV ]

       tc [-s | -d ] class show dev DEV tc filter show dev DEV

       简介

       Tc用于Linux内核的源码流量控制。流量控制包括以下几种方式:

       SHAPING(限制)

       当流量被限制,调试ubbo进阶源码它的源码传输速率就被控制在某个值以下。限制值可以大大小于有效带宽,调试这样可以平滑突发数据流量,源码使网络更为稳定。调试shaping(限制)只适用于向外的源码流量。

       SCHEDULING(调度)

       通过调度数据包的调试传输,可以在带宽范围内,源码按照优先级分配带宽。调试SCHEDULING(调度)也只适于向外的源码流量。

       POLICING(策略)

       SHAPING用于处理向外的流量,而POLICIING(策略)用于处理接收到的数据。

       DROPPING(丢弃)

       如果流量超过某个设定的带宽,就丢弃数据包,不管是向内还是向外。

       流量的处理由三种对象控制,它们是:qdisc(排队规则)、class(类别)和filter(过滤器)。

       QDISC(排队嬖?

       QDisc(排队规则)是queueing discipline的简写,它是理解流量控制(traffic control)的基础。无论何时,内核如果需要通过某个网络接口发送数据包,它都需要按照为这个接口配置的qdisc(排队规则)把数据包加入队列。然后,内核会尽可能多地从qdisc里面取出数据包,把它们交给网络适配器驱动模块。

       最简单的QDisc是pfifo它不对进入的数据包做任何的处理,数据包采用先入先出的方式通过队列。不过,它会保存网络接口一时无法处理的数据包。

       CLASS(类)

       某些QDisc(排队规则)可以包含一些类别,不同的类别中可以包含更深入的QDisc(排队规则),通过这些细分的QDisc还可以为进入的队列的数据包排队。通过设置各种类别数据包的离队次序,QDisc可以为设置网络数据流量的优先级。

       FILTER(过滤器)

       filter(过滤器)用于为数据包分类,决定它们按照何种QDisc进入队列。无论何时数据包进入一个划分子类的类别中,都需要进行分类。分类的方法可以有多种,使用fileter(过滤器)就是其中之一。使用filter(过滤器)分类时,内核会调用附属于这个类(class)的所有过滤器,直到返回一个判决。如果没有判决返回,就作进一步的处理,而处理方式和QDISC有关。

       需要注意的是,filter(过滤器)是在QDisc内部,它们不能作为主体。

       CLASSLESS QDisc(不可分类QDisc)

       无类别QDISC包括:

       [p|b]fifo

       使用最简单的合成篮球源码下载qdisc,纯粹的先进先出。只有一个参数:limit,用来设置队列的长度,pfifo是以数据包的个数为单位;bfifo是以字节数为单位。

       pfifo_fast

       在编译内核时,如果打开了高级路由器(Advanced Router)编译选项,pfifo_fast就是系统的标准QDISC。它的队列包括三个波段(band)。在每个波段里面,使用先进先出规则。而三个波段(band)的优先级也不相同,band 0的优先级最高,band 2的最低。如果band里面有数据包,系统就不会处理band 1里面的数据包,band 1和band 2之间也是一样。数据包是按照服务类型(Type of Service,TOS)被分配多三个波段(band)里面的。

       red

       red是Random Early Detection(随机早期探测)的简写。如果使用这种QDISC,当带宽的占用接近于规定的带宽时,系统会随机地丢弃一些数据包。它非常适合高带宽应用。

       sfq

       sfq是Stochastic Fairness Queueing的简写。它按照会话(session--对应于每个TCP连接或者UDP流)为流量进行排序,然后循环发送每个会话的数据包。

       tbf

       tbf是Token Bucket Filter的简写,适合于把流速降低到某个值。

       不可分类QDisc的配置

       如果没有可分类QDisc,不可分类QDisc只能附属于设备的根。它们的用法如下:

       tc qdisc add dev DEV root QDISC QDISC-PARAMETERS

       要删除一个不可分类QDisc,需要使用如下命令:

       tc qdisc del dev DEV root

       一个网络接口上如果没有设置QDisc,pfifo_fast就作为缺省的QDisc。

       CLASSFUL QDISC(分类QDisc)

       可分类的QDisc包括:

       CBQ

       CBQ是Class Based Queueing(基于类别排队)的缩写。它实现了一个丰富的连接共享类别结构,既有限制(shaping)带宽的能力,也具有带宽优先级管理的能力。带宽限制是通过计算连接的空闲时间完成的。空闲时间的计算标准是数据包离队事件的频率和下层连接(数据链路层)的带宽。

       HTB

       HTB是Hierarchy Token Bucket的缩写。通过在实践基础上的改进,它实现了一个丰富的连接共享类别体系。使用HTB可以很容易地保证每个类别的带宽,虽然它也允许特定的类可以突破带宽上限,占用别的类的带宽。HTB可以通过TBF(Token Bucket Filter)实现带宽限制,也能够划分类别的优先级。

       PRIO

       PRIO QDisc不能限制带宽,因为属于不同类别的数据包是顺序离队的。使用PRIO QDisc可以很容易对流量进行优先级管理,只有属于高优先级类别的数据包全部发送完毕,才会发送属于低优先级类别的数据包。为了方便管理,需要使用iptables或者ipchains处理数据包的服务类型(Type Of Service,ToS)。

       操作原理

       类(Class)组成一个树,每个类都只有一个父类,而一个类可以有多个子类。破产公司游戏源码某些QDisc(例如:CBQ和HTB)允许在运行时动态添加类,而其它的QDisc(例如:PRIO)不允许动态建立类。

       允许动态添加类的QDisc可以有零个或者多个子类,由它们为数据包排队。

       此外,每个类都有一个叶子QDisc,默认情况下,这个叶子QDisc使用pfifo的方式排队,我们也可以使用其它类型的QDisc代替这个默认的QDisc。而且,这个叶子叶子QDisc有可以分类,不过每个子类只能有一个叶子QDisc。

       当一个数据包进入一个分类QDisc,它会被归入某个子类。我们可以使用以下三种方式为数据包归类,不过不是所有的QDisc都能够使用这三种方式。

       tc过滤器(tc filter)

       如果过滤器附属于一个类,相关的指令就会对它们进行查询。过滤器能够匹配数据包头所有的域,也可以匹配由ipchains或者iptables做的标记。

       服务类型(Type of Service)

       某些QDisc有基于服务类型(Type of Service,ToS)的内置的规则为数据包分类。

       skb->priority

       用户空间的应用程序可以使用SO_PRIORITY选项在skb->priority域设置一个类的ID。

       树的每个节点都可以有自己的过滤器,但是高层的过滤器也可以直接用于其子类。

       如果数据包没有被成功归类,就会被排到这个类的叶子QDisc的队中。相关细节在各个QDisc的手册页中。

       命名规则

       所有的QDisc、类和过滤器都有ID。ID可以手工设置,也可以有内核自动分配。

       ID由一个主序列号和一个从序列号组成,两个数字用一个冒号分开。

       QDISC

       一个QDisc会被分配一个主序列号,叫做句柄(handle),然后把从序列号作为类的命名空间。句柄采用象:一样的表达方式。习惯上,需要为有子类的QDisc显式地分配一个句柄。

       类(CLASS)

       在同一个QDisc里面的类分享这个QDisc的主序列号,但是每个类都有自己的从序列号,叫做类识别符(classid)。类识别符只与父QDisc有关,和父类无关。类的命名习惯和QDisc的相同。

       过滤器(FILTER)

       过滤器的ID有三部分,只有在对过滤器进行散列组织才会用到。详情请参考tc-filters手册页。

       单位

       tc命令的所有参数都可以使用浮点数,可能会涉及到以下计数单位。

       带宽或者流速单位:

       kbps

       千字节/秒

       mbps

       兆字节/秒

       kbit

       KBits/秒

       mbit

       MBits/秒

       bps或者一个无单位数字

       字节数/秒

       数据的数量单位:

       kb或者k

       千字节

       mb或者m

       兆字节

       mbit

       兆bit

       kbit

       千bit

       b或者一个无单位数字

       字节数

       时间的计量单位:

       s、sec或者secs

       秒

       ms、msec或者msecs

       分钟

       us、usec、usecs或者一个无单位数字

       微秒

       TC命令

       tc可以使用以下命令对QDisc、下载按钮iapp源码类和过滤器进行操作:

       add

       在一个节点里加入一个QDisc、类或者过滤器。添加时,需要传递一个祖先作为参数,传递参数时既可以使用ID也可以直接传递设备的根。如果要建立一个QDisc或者过滤器,可以使用句柄(handle)来命名;如果要建立一个类,可以使用类识别符(classid)来命名。

       remove

       删除有某个句柄(handle)指定的QDisc,根QDisc(root)也可以删除。被删除QDisc上的所有子类以及附属于各个类的过滤器都会被自动删除。

       change

       以替代的方式修改某些条目。除了句柄(handle)和祖先不能修改以外,change命令的语法和add命令相同。换句话说,change命令不能一定节点的位置。

       replace

       对一个现有节点进行近于原子操作的删除/添加。如果节点不存在,这个命令就会建立节点。

       link

       只适用于DQisc,替代一个现有的节点。

       历史

       tc由Alexey N. Kuznetsov编写,从Linux 2.2版开始并入Linux内核。

       SEE ALSO

       tc-cbq(8)、tc-htb(8)、tc-sfq(8)、tc-red(8)、tc-tbf(8)、tc-pfifo(8)、tc-bfifo(8)、tc-pfifo_fast(8)、tc-filters(8)

       Linux从kernel 2.1.开始支持QOS,不过,需要重新编译内核。运行make config时将EXPERIMENTAL _OPTIONS设置成y,并且将Class Based Queueing (CBQ), Token Bucket Flow, Traffic Shapers 设置为 y ,运行 make dep; make clean; make bzilo,生成新的内核。

        在Linux操作系统中流量控制器(TC)主要是在输出端口处建立一个队列进行流量控制,控制的方式是基于路由,亦即基于目的IP地址或目的子网的网络号的流量控制。流量控制器TC,其基本的功能模块为队列、分类和过滤器。Linux内核中支持的队列有,Class Based Queue ,Token Bucket Flow ,CSZ ,First In First Out ,Priority ,TEQL ,SFQ ,ATM ,RED。这里我们讨论的魔方图像处理源码队列与分类都是基于CBQ(Class Based Queue)的,而过滤器是基于路由(Route)的。

        配置和使用流量控制器TC,主要分以下几个方面:分别为建立队列、建立分类、建立过滤器和建立路由,另外还需要对现有的队列、分类、过滤器和路由进行监视。

        其基本使用步骤为:

        1) 针对网络物理设备(如以太网卡eth0)绑定一个CBQ队列;

        2) 在该队列上建立分类;

        3) 为每一分类建立一个基于路由的过滤器;

        4) 最后与过滤器相配合,建立特定的路由表。

        先假设一个简单的环境

        流量控制器上的以太网卡(eth0) 的IP地址为..1.,在其上建立一个CBQ队列。假设包的平均大小为字节,包间隔发送单元的大小为8字节,可接收冲突的发送最长包数目为字节。

        假如有三种类型的流量需要控制:

        1) 是发往主机1的,其IP地址为..1.。其流量带宽控制在8Mbit,优先级为2;

        2) 是发往主机2的,其IP地址为..1.。其流量带宽控制在1Mbit,优先级为1;

        3) 是发往子网1的,其子网号为..1.0,子网掩码为...0。流量带宽控制在1Mbit,优先级为6。

        1. 建立队列

        一般情况下,针对一个网卡只需建立一个队列。

        将一个cbq队列绑定到网络物理设备eth0上,其编号为1:0;网络物理设备eth0的实际带宽为 Mbit,包的平均大小为字节;包间隔发送单元的大小为8字节,最小传输包大小为字节。

        ?tc qdisc add dev eth0 root handle 1: cbq bandwidth Mbit avpkt cell 8 mpu

        2. 建立分类

        分类建立在队列之上。一般情况下,针对一个队列需建立一个根分类,然后再在其上建立子分类。对于分类,按其分类的编号顺序起作用,编号小的优先;一旦符合某个分类匹配规则,通过该分类发送数据包,则其后的分类不再起作用。

        1) 创建根分类1:1;分配带宽为Mbit,优先级别为8。

        ?tc class add dev eth0 parent 1:0 classid 1:1 cbq bandwidth Mbit rate Mbit maxburst allot prio 8 avpkt cell 8 weight 1Mbit

        该队列的最大可用带宽为Mbit,实际分配的带宽为Mbit,可接收冲突的发送最长包数目为字节;最大传输单元加MAC头的大小为字节,优先级别为8,包的平均大小为字节,包间隔发送单元的大小为8字节,相应于实际带宽的加权速率为1Mbit。

        2)创建分类1:2,其父分类为1:1,分配带宽为8Mbit,优先级别为2。

        ?tc class add dev eth0 parent 1:1 classid 1:2 cbq bandwidth Mbit rate 8Mbit maxburst allot prio 2 avpkt cell 8 weight Kbit split 1:0 bounded

        该队列的最大可用带宽为Mbit,实际分配的带宽为 8Mbit,可接收冲突的发送最长包数目为字节;最大传输单元加MAC头的大小为字节,优先级别为1,包的平均大小为字节,包间隔发送单元的大小为8字节,相应于实际带宽的加权速率为Kbit,分类的分离点为1:0,且不可借用未使用带宽。

        3)创建分类1:3,其父分类为1:1,分配带宽为1Mbit,优先级别为1。

        ?tc class add dev eth0 parent 1:1 classid 1:3 cbq bandwidth Mbit rate 1Mbit maxburst allot prio 1 avpkt cell 8 weight Kbit split 1:0

        该队列的最大可用带宽为Mbit,实际分配的带宽为 1Mbit,可接收冲突的发送最长包数目为字节;最大传输单元加MAC头的大小为字节,优先级别为2,包的平均大小为字节,包间隔发送单元的大小为8字节,相应于实际带宽的加权速率为Kbit,分类的分离点为1:0。

        4)创建分类1:4,其父分类为1:1,分配带宽为1Mbit,优先级别为6。

        ?tc class add dev eth0 parent 1:1 classid 1:4 cbq bandwidth Mbit rate 1Mbit maxburst allot prio 6 avpkt cell 8 weight Kbit split 1:0

        该队列的最大可用带宽为Mbit,实际分配的带宽为 Kbit,可接收冲突的发送最长包数目为字节;最大传输单元加MAC头的大小为字节,优先级别为1,包的平均大小为字节,包间隔发送单元的大小为8字节,相应于实际带宽的加权速率为Kbit,分类的分离点为1:0。

        3. 建立过滤器

        过滤器主要服务于分类。一般只需针对根分类提供一个过滤器,然后为每个子分类提供路由映射。

        1) 应用路由分类器到cbq队列的根,父分类编号为1:0;过滤协议为ip,优先级别为,过滤器为基于路由表。

        ?tc filter add dev eth0 parent 1:0 protocol ip prio route

        2) 建立路由映射分类1:2, 1:3, 1:4

        ?tc filter add dev eth0 parent 1:0 protocol ip prio route to 2 flowid 1:2

        ?tc filter add dev eth0 parent 1:0 protocol ip prio route to 3 flowid 1:3

        ?tc filter add dev eth0 parent 1:0 protocol ip prio route to 4 flowid 1:4

        4.建立路由

        该路由是与前面所建立的路由映射一一对应。

        1) 发往主机..1.的数据包通过分类2转发(分类2的速率8Mbit)

        ?ip route add ..1. dev eth0 via ..1. realm 2

        2) 发往主机..1.的数据包通过分类3转发(分类3的速率1Mbit)

        ?ip route add ..1. dev eth0 via ..1. realm 3

        3)发往子网..1.0/的数据包通过分类4转发(分类4的速率1Mbit)

        ?ip route add ..1.0/ dev eth0 via ..1. realm 4

        注:一般对于流量控制器所直接连接的网段建议使用IP主机地址流量控制限制,不要使用子网流量控制限制。如一定需要对直连子网使用子网流量控制限制,则在建立该子网的路由映射前,需将原先由系统建立的路由删除,才可完成相应步骤。

        5. 监视

        主要包括对现有队列、分类、过滤器和路由的状况进行监视。

        1)显示队列的状况

        简单显示指定设备(这里为eth0)的队列状况

tc qdisc ls dev eth0

       qdisc cbq 1: rate Mbit (bounded,isolated) prio no-transmit

       详细显示指定设备(这里为eth0)的队列状况

tc -s qdisc ls dev eth0

       qdisc cbq 1: rate Mbit (bounded,isolated) prio no-transmit

       Sent bytes pkts (dropped 0, overlimits 0)

       borrowed 0 overactions 0 avgidle undertime 0

       这里主要显示了通过该队列发送了个数据包,数据流量为个字节,丢弃的包数目为0,超过速率限制的包数目为0。

        2)显示分类的状况

        简单显示指定设备(这里为eth0)的分类状况

tc class ls dev eth0

       class cbq 1: root rate Mbit (bounded,isolated) prio no-transmit

       class cbq 1:1 parent 1: rate Mbit prio no-transmit #no-transmit表示优先级为8

       class cbq 1:2 parent 1:1 rate 8Mbit prio 2

       class cbq 1:3 parent 1:1 rate 1Mbit prio 1

       class cbq 1:4 parent 1:1 rate 1Mbit prio 6

       详细显示指定设备(这里为eth0)的分类状况

tc -s class ls dev eth0

       class cbq 1: root rate Mbit (bounded,isolated) prio no-transmit

       Sent bytes pkts (dropped 0, overlimits 0)

       borrowed 0 overactions 0 avgidle undertime 0

       class cbq 1:1 parent 1: rate Mbit prio no-transmit

       Sent bytes pkts (dropped 0, overlimits 0)

       borrowed overactions 0 avgidle undertime 0

       class cbq 1:2 parent 1:1 rate 8Mbit prio 2

       Sent bytes pkts (dropped 0, overlimits 0)

       borrowed 0 overactions 0 avgidle undertime 0

       class cbq 1:3 parent 1:1 rate 1Mbit prio 1

       Sent 0 bytes 0 pkts (dropped 0, overlimits 0)

       borrowed 0 overactions 0 avgidle undertime 0

       class cbq 1:4 parent 1:1 rate 1Mbit prio 6

       Sent bytes pkts (dropped 0, overlimits 0)

       borrowed overactions 0 avgidle undertime 0

       这里主要显示了通过不同分类发送的数据包,数据流量,丢弃的包数目,超过速率限制的包数目等等。其中根分类(class cbq 1:0)的状况应与队列的状况类似。

        例如,分类class cbq 1:4发送了个数据包,数据流量为个字节,丢弃的包数目为0,超过速率限制的包数目为0。

        显示过滤器的状况

tc -s filter ls dev eth0

       filter parent 1: protocol ip pref route

       filter parent 1: protocol ip pref route fh 0xffff flowid 1:2 to 2

       filter parent 1: protocol ip pref route fh 0xffff flowid 1:3 to 3

       filter parent 1: protocol ip pref route fh 0xffff flowid 1:4 to 4

       这里flowid 1:2代表分类class cbq 1:2,to 2代表通过路由2发送。

        显示现有路由的状况

ip route

       ..1. dev eth0 scope link

       ..1. via ..1. dev eth0 realm 2

       ... dev ppp0 proto kernel scope link src ...5

       ..1. via ..1. dev eth0 realm 3

       ..1.0/ via ..1. dev eth0 realm 4

       ..1.0/ dev eth0 proto kernel scope link src ..1.

       ..1.0/ via ..1. dev eth0 scope link

       .0.0.0/8 dev lo scope link

       default via ... dev ppp0

       default via ..1. dev eth0

       如上所示,结尾包含有realm的显示行是起作用的路由过滤器。

        6. 维护

        主要包括对队列、分类、过滤器和路由的增添、修改和删除。

        增添动作一般依照"队列->分类->过滤器->路由"的顺序进行;修改动作则没有什么要求;删除则依照"路由->过滤器->分类->队列"的顺序进行。

        1)队列的维护

        一般对于一台流量控制器来说,出厂时针对每个以太网卡均已配置好一个队列了,通常情况下对队列无需进行增添、修改和删除动作了。

        2)分类的维护

        增添

        增添动作通过tc class add命令实现,如前面所示。

        修改

        修改动作通过tc class change命令实现,如下所示:

tc class change dev eth0 parent 1:1 classid 1:2 cbq bandwidth Mbit

       rate 7Mbit maxburst allot prio 2 avpkt cell

       8 weight Kbit split 1:0 bounded

       对于bounded命令应慎用,一旦添加后就进行修改,只可通过删除后再添加来实现。

        删除

        删除动作只在该分类没有工作前才可进行,一旦通过该分类发送过数据,则无法删除它了。因此,需要通过shell文件方式来修改,通过重新启动来完成删除动作。

        3)过滤器的维护

        增添

        增添动作通过tc filter add命令实现,如前面所示。

        修改

        修改动作通过tc filter change命令实现,如下所示:

tc filter change dev eth0 parent 1:0 protocol ip prio route to

        flowid 1:8

       删除

        删除动作通过tc filter del命令实现,如下所示:

tc filter del dev eth0 parent 1:0 protocol ip prio route to

       4)与过滤器一一映射路由的维护

        增添

        增添动作通过ip route add命令实现,如前面所示。

        修改

        修改动作通过ip route change命令实现,如下所示:

ip route change ..1. dev eth0 via ..1. realm 8

       删除

        删除动作通过ip route del命令实现,如下所示:

ip route del ..1. dev eth0 via ..1. realm 8

ip route del ..1.0/ dev eth0 via ..1. realm 4

turboc2中的快捷键

       希望这些对你有所帮助~

       Turbo C 2.0使用指南

       Turbo C 2.0是Borland公司年推出的C语言编译器,具有编译速度快、代码优化效率高等优点,所以在当时深受喜爱。Turbo C 2.0提供了两种编译环境:一种是类似于UNIX环境的命令行,包含一个TCC编译器和一个MAKE实用程序;一种是集成开发环境,由编辑器、编译器、MAKE实用程序和RUN实用程序,还有一个调试器组成。在这里,我就向大家简单介绍一下集成环境的使用方法。

       进入Tc,您可以看到类似下面这样的屏幕。按F到菜单,将光标移到Options,打开下拉菜单(或可以按Alt+o打开Options下拉菜单),选择Directories,第一行是include文件目录,是你的TC.EXE,所在的目录,假如你的TC.EXE是在C:\TC下那么就是c:\tc\include;同样,第二行是library目录,设成c:\tc\lib第三行为输出.EXE和.OBJ文件的目录,如果为空则输出到c:\tc目录下;第四行为Tc的目录,这里设为c:\tc;第五行是建立PICK文件,默认是TCPICK.TCP,该文件的作用是每次只要键入tc即可在启动TC时自动加载上次编辑的文件。完了以后一定要Save Options。否则下次你还要在设置保存时覆盖原来的就可以了.好了,设置完这些目录以后,您就可以开始进行基本的开发工作了。

       Turbo C 2.0基本使用指南(二)

       现在我们来讲一下各菜单项的功能。

       File菜单:

       File菜单中都是些一般编辑器中常有的功能,如Load、Save等,相信没有必要再讲了,我们就省点口水吧。

       Edit菜单:

       Edit菜单的作用是从菜单切换到编辑栏。其实大可不必这么麻烦,只要按ESC键就可以了。

       Run菜单:

       Run菜单中的命令用于运行程序。

       RUN命令不用讲了,当然是用来运行编译好的程序的啦。

       Program Reset可以终止当前运行的程序,释放分配的内存空间。这在进行调试时退出程序的方法.

       Go To Cursor使程序执行到光标所在处。

       Trace Into单步执行程序,并且进入函数(必须是同一源文件中定义的函数)。

       Step Over单步运行程序,但不进入函数。

       User Screen返回到DOS界面,按任意键可返回。

       Compile菜单

       Compile菜单用于编译.OBJ文件和连接生成.EXE可执行文件。

       Compile To OBJ编译生成OBJ目标文件。

       MAKE EXE File编译、连接一步完成,生成EXE可执行文件。

       Link EXE File连接OBJ文件以生成EXE可执行文件。

       Build all无条件编译所有文件,无论过时与否。

       Primary C File可在编译过程中发现错误是重新载入文件(.H .C)。

       Get Info可获得以下信息:

       源文件

       与当前文件相联系的目标文件

       当前源文件名

       文件大小

       程序退出码

       可用空间

       Project菜单

       Project菜单提供与工程有关的命令。

       Project Name给你的工程起个好听的名字。

       Break Make On设定终止MAKE的缺省条件,通常为ERRORS。

       Auto Dependencies自动依赖检查。就是说让MAKE自动检查盘中是否有相应.C和.H文件。

       Clear Project清除工程文件名,重置消息窗口。

       Remove Messages将错误消息从消息窗口中清除。

       Turbo C 2.0使用指南(三)

       6. Options菜单

       前面我们已经使用过options菜单,可想而知这里主要设置一些集成环境的参数。

       Compiler

       Model内存模式,不同的内存模式将使用不同类型的指针。

       Define宏定义,可用分号“;”划分多重宏定义。

       Code Generation代码生成,控制编译器生成怎样的代码。

       Optimization优化,可按用户的需要优化程序的代码。

       Source源代码,控制编译器如何处理源代码。

       Errors错误,让用户可以控制编译器如何处理和响应诊断信息。

       Names,我也不知道是用来干嘛的。

       Linker

       Map File Menu选择映射文件的类型。

       Intialize Segments段初始化

       Default Libraries设置缺省库表。

       Graphics Libraries打开自动查找BGI图形库。

       Warn Duplicate symbols打开可使连接器警告在目标及库文件里出现的相同字符。

       Stack Warning抑制连接器产生No Strack消息。

       Case-sensitive Link是否区别大小写。

       Environment

       Message Tracking消息跟踪,编译时会跟踪编辑器里的语法错误。

       Keep Messages告诉TC是否保存消息窗口内的消息。

       Config Auto Save设置为ON时,TC将自动保存对TC所做的设置;否则必须使用Options->Save Options才将改动保存。

       Brackup Files打开则会在保存文件时建立备份文件。

       Tab Size设置制表符大小,缺省为缩进8个字节。

       Zoomed Windows设置窗口为全屏幕。这样的话,编辑窗口或消息窗口都将变成整个屏幕的大小,只有活动窗口是可见的。用F6可以互相切换。

       Screen Size设置屏幕大小。

       Directories目录设置。(看者云:前面不是已经设置好了吗?少废话了!)

       Arguments在用run->run运行程序时,可在这里加上参数。

       Save Options更改好设置以后,一定要在这里保存一下。除非将Options->Environment-> Config Auto Save置为ON。

       Retrieve Options这个命令可以重新加载以前保存的配置文件。

       Turbo C 2.0使用指南(四)

       7. Debug菜单

       Debug菜单命令用来完成调试工作。

       Evaluate可以测试甚至修改一个变量或表达式的值。注意:表达式不能包含函数调用和宏。

       Call Stack用来跟踪当前函数的调用关系,他弹出一个包含调用栈的窗口。

       Find Function顾名思义,就是查找函数定义。只有在运行调试时可用。

       Refresh Display刷新屏幕。如果编辑屏被你的程序改写了,可以用它恢复。

       Display Swapping控制是否在程序运行是切换屏幕。

       Source Debugging打开源代码调试。

       8. Break/watch菜单

       Break/watch菜单用来设置/删除断点或监视项。

       Add Watch添加监视项。可以监视一个变量或表达式的值。

       Delete Watch删除监视项。

       Edit Watch编辑你所监视的表达式。

       Remove All Watches删除所有监视项。

       Toggle Breakpoint设置或删除断点。如果设置了断点,程序运行到这一行就会停下来。

       Clear All Breakpoints清除所有断点。

       View Next Breakpoint按设置顺序移到下一个断点处。

       Turbo C 2.0集成环境的所有菜单命令已经介绍完了,下面我们将通过一个实例来看看在Turbo C下如何创建你的程序。

       Turbo C 2.0使用指南(五)

       现在让我们来看看怎样在TurboC中创建程序。我们可以键入tc或tc test进入TC集成环境。在编辑窗中输入我们的程序代码,例如下面这段:

       /* just for a testing */

       /* print a string "Hello,world!" */

       int main(void)

       {

       char str[]="Hello,world!";

       void showstr(char *p);

       showstr(str);

       return 0;

       }

       void showstr(char *p)

       {

       printf(p);

       }

       代码输入完后按F2来存盘。要进行编译最简单的是按F9用MAKE实用程序,编译并且连接生成EXE文件。此时如果程序中有错误,编译器会在底下的消息窗口给出错误信息(关于错误信息的意思,以后我会再写一篇),光标移到消息条上,按ENTER或F6可回到编辑窗再修改程序。

       我们可以通过设置断点和监视项来调试程序。将光标移到第5行,按ctrl+F8即可在这里设置断点。将光标移到第7行的str上,按ctrl+F7可添加监视项监视str的值。

       然后按ctrl+F9运行程序。由于刚才在第5行设置了断点,程序运行到第6行就会暂停,要再按一次F9才继续。从watch窗口中,我们可以看到str: "Hello,world!",这是str当前的值。如果str的值改变,这里的显示也会跟着改变。

       我们还可以按F8或F7单步执行程序。我们来让程序运行到第7行,这时你就可以发现F8和F7的区别了。F8将执行完第7行的指令后,光条直接移到了第8行,也就是说它跳过了函数showstr()。而F7会从第7行跳到第行而进入函数showstr()内部。请注意,F7只能进入当前编辑文件中定义的函数,而且不能进入库函数。

       当然还有再复杂的用法,但我就不是很会了。

       希望这些对一些新手有用。

相关推荐
一周热点