皮皮网
皮皮网
平板 hdmi 源码输出

【源码改完后怎么打包】【牛排网页源码】【椭圆公章源码】lifecycleregister源码

时间:2025-01-06 08:03:51 分类:热点 编辑:独立站源码交付
1.lifecycleregisterԴ??
2.Servlet源码和Tomcat源码解析
3.LiveData 面试题库、解答、源码分析
4.Lifecycle
5.Maven中的几个重要概念:lifecycle, phase 和 goal
6.源码解读最详细的LiveData分析,从未如此丝滑

lifecycleregister源码

lifecycleregisterԴ??

       深入理解Android应用的生命周期管理,Lifecycle在Android Jetpack中发挥着核心作用。它帮助开发者对Activity和Fragment等组件的源码改完后怎么打包生命周期进行精确控制,通过一系列事件如Lifecycle.Event(如onCreate、onStart等)来执行相应的操作。

       生命周期管理的关键在于LifecycleOwner(如Activity和Fragment)与LifecycleObserver的交互。前者是生命周期的主体,后者则是监听和响应这些事件的组件。开发者可以通过实现LifecycleObserver接口,注册回调方法,当组件状态改变时,这些方法会被自动调用。

       在代码层面,Lifecycle的基本实现涉及Lifecycle接口、LifecycleRegistry和LifecycleObserver接口的使用。例如,创建LifecycleRegistry实例并添加观察者,当组件状态变化时,handleEvent方法会处理并通知观察者。源码分析深入Android Framework,揭示了LifecycleRegistry类及其实现细节,如LifecycleRegistry类中包含的关键类和方法,确保了生命周期管理的有序和准确性。

       总之, Lifecycle是Android应用开发中的重要工具,它简化了组件生命周期的管理,提高了代码的可维护性和应用的稳定性。深入理解并有效利用Lifecycle,是构建高效高质量Android应用不可或缺的一部分。

Servlet源码和Tomcat源码解析

       画的不好,请将就。

       我一般用的IDEA,很久没用Eclipse了,所以刚开始怎么继承不了HttpServlet类,然后看了一眼我创建的是Maven项目,然后去Maven仓库粘贴了Servlet的坐标进来。

       maven坐标获取,直接百度maven仓库,选择第二个。牛排网页源码

       然后搜索Servlet选择第二个。

       创建一个类,不是接口,继承下HttpServlet。

       Servlet接口包括:init()、service()、destroy()和getServletInfo()。其中init()方法负责初始化Servlet对象,容器创建好Servlet对象后会调用此方法进行初始化;service()方法处理客户请求并返回响应,容器接收到客户端要求访问特定的Servlet请求时会调用此方法;destroy()方法负责释放Servlet对象占用的资源;getServletInfo()方法返回一个字符串,包含Servlet的创建者、版本和版权等信息。

       ServletConfig接口包含:getServletName()、getServletContext()、getInitParameter(String var1)和getInitParameterNames()。其中getServletName()用于获取Servlet名称,getServletContext()获取Servlet上下文对象,getInitParameter(String var1)获取配置参数,getInitParameterNames()返回所有配置参数的名字集合。

       GenericServlet抽象类实现了Servlet接口的同时,也实现了ServletConfig接口和Serializable接口。它提供了一个无参构造方法和一个实现init()方法的构造方法。GenericServlet中的init()方法保存了传递的ServletConfig对象引用,并调用了自身的无参init()方法。它还实现了service()方法,这是Servlet接口中的唯一没有实现的抽象方法,由子类具体实现。

       HttpServlet是Servlet的默认实现,它是与具体协议无关的。它继承了GenericServlet,并实现了Servlet接口和ServletConfig接口。HttpServlet提供了一个无参的init()方法、一个无参的destroy()方法、一个实现了getServletConfig()方法的方法、一个返回空字符串的getServletInfo()方法、以及一个实现了service()方法的抽象方法。service()方法的实现交给了子类,以便在基于HTTP协议的Web开发中具体实现。

       Tomcat的底层源码解析如下:

       Server作为整个Tomcat服务器的代表,包含至少一个Service组件,用于提供特定服务。椭圆公章源码配置文件中明确展示了如何监听特定端口(如)以启动服务。

       Service是逻辑功能层,一个Server可以包含多个Service。Service接收客户端请求,解析请求,完成业务逻辑,然后将处理结果返回给客户端。Service通常提供start方法打开服务Socket连接和监听服务端口,以及stop方法停止服务并释放网络资源。

       Connector称为连接器,是Service的核心组件之一。一个Service可以有多个Connector,用于接收客户端请求,将请求封装成Request和Response,然后交给Container进行处理。Connector完成请求处理后,将结果返回给客户端。

       Container是Service的另一个核心组件,按照层级有Engine、Host、Context、Wrapper四种。一个Service只有一个Engine,它是整个Servlet引擎,负责执行业务逻辑。Engine下可以包含多个Host,一个Tomcat实例可以配置多个虚拟主机,默认情况下在conf/server.xml配置文件中定义了一个名为Catalina的Engine。Engine包含多个Host的设计使得一个服务器实例可以提供多个域名的服务。

       Host代表一个站点,可以称为虚拟主机,一个Host可以配置多个Context。在server.xml文件中的默认配置为appBase=webapps,这意味着webapps目录中的war包将自动解压,autoDeploy=true属性指定对加入到appBase目录的war包进行自动部署。

       Context代表一个应用程序,即日常开发中的Web程序或一个WEB-INF目录及其下面的web.xml文件。每个运行的Web应用程序最终以Context的形式存在,每个Context都有一个根路径和请求路径。与Host的区别在于,Context代表一个应用,impep网站源码如默认配置下webapps目录下的每个目录都是一个应用,其中ROOT目录存放主应用,其他目录存放子应用,而整个webapps目录是一个站点。

       Tomcat的启动流程遵循标准化流程,入口是BootStrap,按照Lifecycle接口定义进行启动。首先调用init()方法逐级初始化,接着调用start()方法启动服务,同时伴随着生命周期状态变更事件的触发。

       启动文件分析Startup.bat:

       设置CLASSPATH和MAINCLASS为启动类,并指定ACTION为启动。

       Bootstrap作为整个启动时的入口,在main方法中使用bootstrap.init()初始化容器相关类加载器,并创建Catalina实例,然后启动Catalina线程。

       Catalina Lifecycle接口提供了一种统一管理对象生命周期的接口,通过Lifecycle、LifecycleListener、LifecycleEvent接口,Catalina实现了对Tomcat各种组件、容器统一的启动和停止方式。在Tomcat服务开启过程中,启动的一系列组件、容器都实现了org.apache.catalina.Lifecycle接口,其中的init()、start()和stop()方法实现了统一的启动和停止管理。

       加载方法解析server.xml配置文件,加载Server、Service、Connector、Container、Engine、Host、Context、Wrapper一系列容器,加载完成后调用initialize()开启新的Server实例。

       使用Digester类解析server.xml文件,通过demon.start()方法调用Catalina的start方法。Catalina实例执行start方法,包括加载server.xml配置、dsf架构源码初始化Server的过程以及开启服务、初始化并开启一系列组件、子容器的过程。

       StandardServer实例调用initialize()方法初始化Tomcat容器的一系列组件。在容器初始化时,会调用其子容器的initialize()方法,初始化子容器。初始化顺序为StandardServer、StandardService、StandardEngine、Connector。每个容器在初始化自身相关设置的同时,将子容器初始化。

LiveData 面试题库、解答、源码分析

       LivaData 的面试题库与解答、源码分析

        作者:唐子玄

       1. LiveData 如何感知生命周期的变化?

       LiveData 在常规的观察者模式上附加了条件,若生命周期未达标,即使数据发生变化也不通知观察者。这通过 Lifecycle 实现,Lifecycle 是生命周期对应的类,提供了添加/移除生命周期观察者的方法,并定义了全部生命周期的状态及对应事件。要观察生命周期,需要实现 LifecycleEventObserver 接口,并注册给 Lifecycle。除了生命周期观察者外,还有数据观察者,数据观察者会与 LifecycleOwner 进行绑定。

       2. LiveData 是如何避免内存泄漏的?

       内存泄漏是因为长生命周期的对象持有了短生命周期对象。在观察 LiveData 数据的代码中,Observer 作为界面的匿名内部类,它会持有界面的引用,同时 Observer 被 LiveData 持有,LivData 被 ViewModel 持有,而 ViewModel 的生命周期比 Activity 长。最终的持有链导致内存泄漏。LiveData 帮助避免内存泄漏,在内部 Observer 会被包装成 LifecycleBoundObserver,这实现了生命周期感知能力,同时它还持有了数据观察者,具备了数据观察能力。

       3. LiveData 是粘性的吗?若是,它是怎么做到的?

       是的,LiveData 是粘性的。数据是持久的,意味着它不会因被消费而消失。当 LiveData 值更新时,会通知所有观察者。这一过程通过一个 Map 结构保存了所有观察者,并通过遍历 Map 并逐个调用 considerNotify() 方法实现。观察者会被包装在 LifecycleBoundObserver 中,它具备了生命周期感知能力,同时持有了数据观察者。当组件生命周期发生变化时,会尝试将最新值分发给该数据观察者。

       4. 粘性的 LiveData 会造成什么问题?怎么解决?

       粘性的 LiveData 可能导致数据重复消费或消费逻辑混乱。解决方案包括使用带消费记录的值、带有最新版本号的观察者、SingleLiveEvent 等。其中,使用 SingleLiveEvent 可以根据数据的分类(暂态数据或非暂态数据)来选择性地利用或避免粘性。

       5. 什么情况下 LiveData 会丢失数据?

       在高频数据更新的场景下使用 LiveData.postValue() 时,如果在这次调用和下次调用之间再次调用 postValue(),则会导致数据丢失,因为值先被缓存,再向主线程抛出分发值的任务。这与 LiveData 的设计和更新机制有关。

       6. 在 Fragment 中使用 LiveData 需注意些什么?

       在 Fragment 中使用 LiveData 时,应当使用 viewLifecycleOwner 而非 this。避免因生命周期不一致导致的额外订阅者问题。使用 SingleLiveEvent 可以解决数据重复消费问题。

       7. 如何变换 LiveData 数据及注意事项?

       androidx.lifecycle.Transformations 提供了变换 LiveData 数据的方法,如 map()。需要注意数据变换操作应避免阻塞主线程,可使用 CoroutineLiveData 来异步化数据变换。

Lifecycle

        Android知识总结

        类讲解

        在ComponentActivity 中的onCretae方法

        ReportFragment 类是一个Fragment,它负责分派生命周期的时间,injectIfNeededIn()就是在当前的Activity里添加一个ReportFragment。

        LifecycleRegister 类中的addObserver方法

        我们看 LifecycleRegistry 中的内部类 ObserverWithState 的创建

        执行 Lifecycling.lifecycleEventObserver

        创建 ReflectiveGenericLifecycleObserver 观察者

        接下来看 ClassesInfoCache 类的方法

        然后 Event 发生变化的时候会从 mCallbackMap 中拿去对应的class文件,然后通过反射执行对应生命周期方法。源码分析如下:

        你会发现都调用了dispatch()方法,而dispatch()方法则会判断Activity是否实现了LifecycleOwner接口,如果实现了该接口就调用 LifecycleRegister#handleLifecycleEvent() ,这样生命周期的状态就会借由LifecycleRegistry通知给各个 LifecycleObserver 从而调用其中对应 Lifecycle.Event 的方法。这种通过Fragment来感知Activity生命周期的方法其实在Glide的中也是有体现的。

        我们这边只看前进流程,后退流程同理

        ObserverWithState 是 LifecycleRegistry 的实现类

        根据前面添加观察者分析,我们的到会进入 ReflectiveGenericLifecycleObserver 中执行 onStateChanged

        执行 ClassesInfoCache 内部类 CallbackInfo#invokeCallbacks

        在 ClassesInfoCache 内部类 MethodReference#invokeCallback 我们可以看到通过反射执行生命周期方法

        实现 LifecycleObserver 的实现

        使用

Maven中的几个重要概念:lifecycle, phase 和 goal

       Maven生命周期是构建项目时执行的一系列阶段,包含清理、生成报告和核心构建部分。

       清理阶段包括:

       1. pre-clean:执行清理前的准备工作

       2. clean:移除上一次构建生成的所有文件

       3. post-clean:清理后立即执行的操作

       生成报告阶段包括:

       1. pre-site:执行生成文档前的工作

       2. site:生成项目站点文档

       3. post-site:生成文档后和部署相关的操作

       4. site-deploy:将站点文档部署至特定服务器

       核心构建包括:

       1. validate:验证工程正确性

       2. initialize:初始化构建平台

       3. 编译源代码:compile

       4. 复制并处理资源文件:process-resources

       5. 包装为指定格式:package

       6. 将包安装至本地仓库:install

       7. 将最终包复制到远程仓库:deploy

       每个阶段的执行由Maven插件中对应的目标goal触发。在配置文件中可以通过指定phase和goal来精确控制执行的阶段和目标。

       例如,以下配置会在编译时执行特定类的方法:

       以上介绍了Maven生命周期、各个阶段和目标的基本概念及其使用方式。

源码解读最详细的LiveData分析,从未如此丝滑

       本文深入解析LiveData在Android开发中的实现机制及用法,内容涵盖LiveData的生命周期感知、观察者注册、事件回调机制、数据更新以及解决粘性事件问题。通过分析LiveData的源码,以期读者能够深入理解LiveData的运作原理,从而在实际开发中灵活运用。

       首先,LiveData是一种数据存储类,与传统的可观察类相比,具有生命周期感知能力。这意味着LiveData只会更新处于活跃生命周期状态的组件观察者,确保了数据的实时性和安全性。其感知能力基于LifecycleOwner接口,使得活动组件能够安心观察LiveData,无需担心组件生命周期变化导致的数据泄露。

       在注册观察者时,LiveData内部通过LifecycleBoundObserver进行封装,确保只有处于活跃状态的组件才能成功注册。当组件进入DESTROYED状态时,观察者会自动移除,从而实现自动取消注册,避免了额外的代码实现。

       当组件状态发生改变时,LiveData会通过Lifecycle的onStateChanged方法通知其内部的LifecycleBoundObserver,从而触发观察者回调。观察者在被移除或组件状态改变为DESTROYED时,不会收到任何通知。这确保了数据的实时性和组件的资源管理。

       对于数据更新,LiveData提供postValue和setValue方法。setValue直接在主线程执行,而postValue则在主线程执行后调用setValue,确保数据更新的同步性。这些方法最终都会触发观察者回调,实现数据的实时更新。

       观察者永久订阅(observeForever)机制则确保了即使观察者在组件销毁后被重新创建,也能接收到数据更新。通过AlwaysActiveObserver类实现,该类不依赖于组件的生命周期状态,确保了观察者状态的始终活跃。

       在处理粘性事件时,LiveData通过在考虑通知方法中进行版本判断,确保只在观察者版本更新时发送数据。当新观察者订阅时,其版本尚未被初始化,导致旧值发送,这是粘性事件发生的根本原因。解决这一问题,需要确保观察者版本的正确性,避免不必要的数据发送。

       综上,LiveData的源码解析涵盖了其核心机制、注册与取消注册流程、事件回调机制、数据更新方式以及解决粘性事件的方法。通过深入理解LiveData的工作原理,开发者能够在实际项目中高效地管理数据更新和组件生命周期,实现更加流畅和安全的用户体验。

lifecycleScope 和viewModelScope

       前序:

       通过《ViewModel中的简易协程:viewModelScope》的文章,联想到了lifecycleScope的使用。

       LifecycleScope,即具有生命周期的协程,是LifecycleOwner的扩展属性,与生命周期绑定,并在LifecycleOwner销毁时自动取消。

       引入使用:LifecycleScope作为Lifecycle的扩展属性,与LifecycleOwner绑定。在示例中,lifecycleScope默认主线程,可通过withContext指定线程。

       whenResumed与launchWhenResumed在执行时机上相似,关键区别在于它们在生命周期不同状态下的行为。

       lifecycleScope的源码分析揭示了它如何避免内存泄漏。lifecycleScope继承自LifecycleCoroutineScope,后者的register方法添加了LifecycleEventObserver监听,当生命周期状态变为destroyed时,监听被移除,协程取消。

       源码中的小技巧指出,当继承对象与返回对象不一致时,返回对象通常是继承对象的子类。这解释了lifecycleScope的生命周期管理。

       在其他开发场景中,可以借鉴源码中的监听机制来实现资源回收,避免内存泄漏。

       关于如何在特定生命周期执行协程,以lifecycleScope.launchWhenResumed为例,涉及LifecycleController和LifecycleEventObserver的使用。

       当调用whenResumed并传入具体生命周期状态时,创建LifecycleController并初始化监听。在回调中,当生命周期状态大于传入状态时,执行调度队列,开始协程执行。

       关于获取当前生命周期状态,涉及到Lifecycle相关知识。在不同组件(如Activity或Fragment)中,通过ComponentActivity的实现来派发生命周期状态。

       验证分析通过代码测试和源码调试,证实了以上流程的正确性。

       总结:lifecycleScope的使用及执行流程分析,揭示了其如何与生命周期绑定,避免内存泄漏,并在特定生命周期执行协程。

Lifecycle源码解析

       作者:Gs 转载地址: /post/

       1、猜想

       如果是我们实现Lifecycle的功能,我们会如何设计?

       2、入口

       既然Activity或者Fragment作为生命周期的所有者,并且在他们中增加了LifecycleObserver,那么我们就从Activity或者Fragment作为探索Lifecycle原理的入口。在Activity或者Fragment中使用Lifecycle时,我们通常会看到如下代码:

       我们进入getLifecycle()方法。注:以Activity中的代码为例。

       这是Activity的父类ComponentActivity中的代码:

       getLifecycle()返回的mLifecycleRegistry,直接使用new创建。

       LifecycleRegistry的构造方法必须传递LifecycleOwner参数。而ComponentActivity已经实现了LifecycleOwner接口,所以可以直接

       LifecycleOwner接口很简单,只有一个getLifecycle()抽象方法。

       所以我们的Activity或者Fragment作为生命周期的所有者,同时也实现了LifecycleOwner接口,通过getLifecycle()方法获取LifecycleRegistry对象,LifecycleRegistry也就是实现生命周期分发的类。

       LifecycleRegistry在lifecycle-runtime包中。

       3、生命周期事件分发

       我们看到Activity的父类ComponentActivity实现了LifecycleOwner接口,并且创建了LifecycleRegistry对象。那么生命周期的分发也应该在ComponentActivity的各个生命周期方法中吧。然而,我们看到ComponentActivity中只复写了onCreate()方法,没有其他生命周期方法。

       里面有一句代码

       ReportFragment不是在上面中和LifecycleRegistry在lifecycle-runtime包中一起出现的吗?所以ReportFragment一定是为了实现Lifecycle功能。

       injectIfNeededIn()方法很简单,就是创建ReportFragment加入到Activity中。但是它里面包含了各个生命周期方法,而且都调用了分发方法dispatch()。参数就是我们在自定义LifecycleObserver中给方法加的注释事件。

       至此,我们找到了生命周期事件的分发方法dispatch(Event event),方法内部使用LifecycleRegistry的handleLifecycleEvent(event)分发事件。上面我们也说过LifecycleRegistry就是实现生命周期分发的类。而ReportFragment的作用就是获取生命周期而已,因为Fragment生命周期是依附Activity的。好处是把这部分逻辑抽离出来,实现Activity的无侵入。如果你对加载库Glide比较熟悉,就会知道它也是使用透明Fragment获取生命周期的。

       4、生命周期事件处理

       LifecycleRegistry继承自Lifecycle。

       Lifecycle使用两种主要枚举跟踪其关联组件的生命周期状态:

       Event触发的时机:

       您可以将状态看作图中的节点,将事件看作这些节点之间的边。上一节中,我们知道ReportFragment生命周期发生变化时,都会调用LifecycleRegistry中的handleLifecycleEvent()方法。因此,我们先看一下handleLifecycleEvent()方法。

本文地址:http://j5.net.cn/news/1b922190777.html

copyright © 2016 powered by 皮皮网   sitemap