皮皮网

【雅加达溯源码工厂】【bitkeep源码】【成交源码】qemu源码调试

时间:2025-01-04 06:19:22 分类:娱乐 来源:麒麟源码网全站源码

1.如何使用qemu调试freebsd/linux内核?源码
2.学习笔记:搭建 Linux 内核网络调试环境(vscode + gdb + qemu)
3.qemu单步调试arm64 linux kernel
4.qemu调试kernel启动(从第一行汇编开始)
5.Ubuntu22.04上实现GDB+Qemu调试Linux内核网络协议栈的环境配置教程
6.openbmc 基于qemu的调试环境搭建

qemu源码调试

如何使用qemu调试freebsd/linux内核?

       无人知晓:qemu搭建arm linux kernel调试环境

       在深入讲解如何单步调试内核之前,我们需要先了解配置qemu启动环境的调试步骤和方法。本次实验以基于ARM架构的源码环境为例。为了方便调试,调试我们需要准备一个host=x,源码target = arm版本的调试雅加达溯源码工厂gdb。有三种方式可以选择:使用sudo apt安装gdb-multiarch,源码下载ARM官网提供的调试交叉编译工具链(其中包含gdb),或自行下载gdb源码并编译。源码不同安装方式可能在特性支持上有所差异,调试使用apt安装的源码gdb在某些老版本的Ubuntu上可能存在部分特性不支持的情况,如ARMv8.5的调试PAC和BTI特性。需要注意的源码是,使用ARM官网提供的调试gdb启动时可能会遇到缺少库文件或python3.8的依赖问题,需要通过相应的源码解决步骤进行处理。

       进行内核调试,我们可以遵循以下步骤:首先,使用qemu启动内核并暂停等待,同时建立网络端口以备gdb连接。其次,启动gdb并加载对应kernel Image的vmlinux文件,然后通过attach到指定端口完成连接。如果内核启动时已暂停,直接设置断点即可开始调试。若未选择启动时暂停,可使用ctrl + c触发挂起状态,之后进行常规断点设置。

       在进行qemu启动内核的调试时,需要确保正确处理KASLR问题。KASLR(Kernel Address Space Layout Randomization)是在内核启动时添加的随机地址保护机制,导致实际运行地址与vmlinux文件中的地址存在随机偏移。为解决这一问题,可以采取以下两种方式:一是重新编译内核,修改arch/arm/configs/defconfig中的CONFIG_RANDOMIZE_BASE参数,将其更改为CONFIG_RANDOMIZE_BASE=n,以关闭KASLR功能。二是通过qemu启动的cmdline参数增加nokaslr,以关闭内核的KASLR功能。经过上述处理,断点设置将能正确生效,bitkeep源码并显示正确的调用栈信息。

       总结而言,在使用qemu进行内核调试时,需要注意关闭KASLR功能,确保qemu启动脚本的正确性和gdb的兼容性。调试过程中,对于KASLR原理的相关知识有兴趣的伙伴,可以参考专门的文章进行深入了解。

学习笔记:搭建 Linux 内核网络调试环境(vscode + gdb + qemu)

       本文主要介绍了如何搭建Linux内核网络调试环境,主要步骤包括:

       首先,使用VM(虚拟机)和Ubuntu .,配置dhcp方式的网络,绑定主机网卡,确保获得有效IP地址和DNS配置。

       接着,安装和配置内核源码、gdb,进行内核的编译,并测试gdb是否能正确调试内核。

       然后,使用qemu模拟器进行测试,特别提到一个关键问题:qemu的bzImage与gdb的vmlinux如何匹配。实际调试中,你需要确保gdb服务器与qemu的vmlinux关联正确。

       对于非图形化的gdb,可以借助VSCode进行更便捷的调试。配置步骤包括设置远程连接Ubuntu、内核源码查阅和开启调试功能。

       在VSCode中,创建Linux配置,安装相关插件后,可通过“运行”->“添加配置”启动调试。

       在调试过程中,qemu需启用调试模式,通过输入's',VSCode可以捕获断点并进行深入调试。

       为了实现外网通信,需要在VM中设置网桥,将qemu接口连接到网络。成交源码

       测试阶段,可以将监听地址从.0.0.1调整为VM所在网段的地址,便于telnet测试。

qemu单步调试arm linux kernel

       本文旨在指导如何在qemu上进行arm Linux内核的单步调试,首先了解一下目标和背景。

       调试环境的搭建是关键,推荐使用arm的gdb,可通过三种方式获取:一为sudo apt安装gdb-multiarch,注意如使用老旧的Ubuntu可能不支持某些特性;二是下载Arm GNU Toolchain的交叉编译工具链,其中自带gdb;三是手动编译gdb源码。在使用过程中,可能会遇到依赖问题,如库和python3.8的缺失,可通过相应方法解决。

       接下来是调试步骤:首先,启动qemu并暂停内核,设置网络端口以等待gdb的连接;然后,启动gdb,指定目标为arm,加载vmlinux并连接到指定的端口;如果内核启动时自动暂停,可以直接设置断点,否则需在挂起后设置。

       qemu的调试脚本示例中,务必确保在内核源码目录下执行gdb,以查看并处理KASLR带来的问题。KASLR(随机地址空间布局随机化)会影响内核运行地址,需要在配置时禁用或者在启动cmdline中添加nokaslr参数来避免影响断点调试。

       总结来说,调试时务必注意关闭KASLR,调整合适的脚本,并确保对KASLR设置的灵活性。完整的qemu启动脚本可参考相关文章深入理解KASLR原理。

qemu调试kernel启动(从第一行汇编开始)

       在深入理解Linux启动流程时,关注的焦点通常在于start_kernel之后的内核初始化,但在正式调试之前,先要知道从第一行汇编代码开始的调试方法。关键步骤在于正确加载symbols到物理或虚拟地址,这取决于MMU的状态。

       在使用qemu进行调试时,bbsmax 源码启动时添加-S选项会显示物理地址,如0x,但需注意不同qemu版本可能有所不同,以Ubuntu .自带的6.2.0版本为例,kernel的物理起始地址是0x。而在vmlinux中,_text段的虚拟地址为0xffff。

       为了将物理地址和vmlinux中的地址对齐,需要查看qemu源码中的hw/arm/boot.c部分,确认哪些段需要映射。例如,通过add-symbol-file命令,指定如下地址映射关系:.head.text到0x,.text到0x等。设置断点在_text处,如b _text,即可开始单步调试。

       总结来说,不论是哪种调试器,首要任务是将elf文件的执行地址与目标执行地址(物理或虚拟)对齐,这是调试入口的关键。理解并掌握这一原则,能让你更有效地进行内核调试工作。

Ubuntu.上实现GDB+Qemu调试Linux内核网络协议栈的环境配置教程

       在Linux内核网络协议栈学习中,仅通过源码分析难以追踪具体函数调用栈。GDB与Qemu的结合能有效辅助源码分析。

       现有教程使用的是老版本内核(4..)在Centos上编译,然后在Ubuntu上运行,且内核缺少默认网卡。因此,本文尝试使用Ubuntu.和Linux内核5..版本,以解决上述问题并提供研究网络协议栈的完整环境。

       首先,Linux内核编译与文件系统制作需在root权限下进行。

       2.1 Linux内核编译

       依赖安装,下载包并配置脚本。编译内核并生成所需文件。

       2.2 启动内存文件系统制作

       安装、编译、tabhost 源码生成内存文件系统,配置inittab与rcS。

       3 Qemu启动内核

       在Qemu中加载编译好的vmlinux、bzImage、rootfs.img文件,启动系统。

       4 支持GDB调试

       启动后程序无任何启动信息,需挂接GDB并执行run命令以正常启动。使用指定参数配置GDB与Qemu。

       5 网络配置

       网络配置依赖个人能力,搭建环境后,可使用GDB跟踪网络栈。

       6 参考资料

       相关文章、教程及更新信息提供内核调试、网络栈研究所需资源。

       更新信息

       新增工具与方法,如pwru、ksnoop、bpftrace、nettrace等,用于更高效地分析网络流程与内核问题。

       更新建议

       推荐使用syzkaller的Qemu启动内核教程,构建包含网络可用的rootfs,并通过fsdev参数共享文件,便于使用。

       总结

       本文提供了一种基于Ubuntu.的完整环境配置教程,以实现GDB+Qemu调试Linux内核网络协议栈。通过更新的内核版本与网络支持,简化了学习与研究过程,为深入理解内核网络机制提供了便利。

openbmc 基于qemu的调试环境搭建

       基础知识略过,本文聚焦于openbmc开发调试的核心部分——前后端联动单步调试,将全面展示搭建基于qemu的调试环境。

       搭建环境前,确保基础环境准备就绪,openbmc开发者通常具备所需基础知识。首先,下载SDK手册,选用ASpeed芯片作为典型例子,多数openbmc项目采用此版本。

       推荐使用自定义脚本辅助编译过程,自行试验后发现效果显著。成功编译后,即完成基础环境搭建。接下来,转向前后端调试环境的构建。

       使用qemu核心参数实现主机与虚拟机间端口转发,此操作相当于提供一块虚拟开发板,使得外部访问变得简单直接。主机端口转发命令示例为:hostfwd=[tcp|udp]:[hostaddr]:hostport-[guestaddr]:guestport。此选项支持针对TCP或UDP协议的数据传输,且允许在单个命令中指定多个端口转发。

       注意系统默认apt安装的版本为6.2,过时可能导致模拟运行失败。需进行升级操作。通过命令删除旧版本,并下载openbmc发布的8.2版本,确保模拟环境的兼容性。

       前端UI运行与后端运行同步进行。通过qemu启动openbmc镜像,调整相关参数,确保与自身环境相适应。针对romulus测试镜像和ast,分别通过bitbake编译生成最新的(V.)版本,并增加gdb调试端口转发至主机端口。

       前端代码准备阶段,openbmc前端已采用vue实现(vue2),webui-vue代码通过下载获得。老版本UI已不再维护,建议基于AngularJS的代码不再考虑。Node版本推荐使用。

       项目文件修改涉及增加环境变量,可通过修改webui-vue中的配置文件vue.config.js完成,其中ip地址为Ubuntu宿主机的ip地址和转发端口。

       项目运行阶段,使用vscode打开项目,并在edge中安装Vue开发者工具。前端效果验证通过后,应能通过前端链接访问到qemu中openbmc的web后端——bmcweb,用户名和密码默认为root/0penBmc,初次访问需确认风险继续。

       VUE开发者工具的集成使得调试更加直观有效。后端调试方面,通过yocto的开发者工具devtool进行代码导出,这是整个openbmc作为大型Linux发布系统集成的体现。建议掌握两个基础命令,更详细的命令参考可获取。

       源码编译阶段,推荐通过标准SDK进行,而非增量编译。标准SDK编译过程可控,参数调整方便。导出标准SDK后,无yocto环境的主机也可调试openbmc固件,下载配套源码进行编译。

       bmcweb更新通过scp命令上传编译好的带debuginfo的版本,注意需先stop服务/kill相关进程,确保上传成功后再次启动服务。gdbserver交叉编译与安装则用于gdb调试,启动qemu时增加gdb调试端口转发至主机端口。通过gdbserver与宿主机连接,实现调试。

       调试demo以获取NTP信息页面为例,展示调试流程。总结而言,通过以上步骤搭建的gdb调试环境适用于复杂如bmcweb后端的案例,其他dbus应用程序亦可基于此方法进行调试,核心要点在于掌握gdb调试技巧。相信有了gdb,openbmc的学习与理解将更深入。

手把手教你搭建ARM QEMU环境

       在上篇介绍了ARM QEMU环境搭建过程后,让我们继续学习如何搭建ARM QEMU开发环境。

       首先,准备开发环境:

       你的PC系统:Windows

       虚拟机软件:VMware

       虚拟机操作系统:Ubuntu .

       目标模拟的位CPU:Cortex-A

       使用版本:qemu-8.2.0、Linux Kernel 5..和busybox-1..1

       构建步骤如下:

       从qemu官网下载并解压qemu-8.2.0源码。

       确保你的主机Python版本大于3.8,如需升级,访问python官网下载源码。

       安装所需的Python依赖和glib2.0环境。

       进入qemu目录,配置源码,创建编译目录并进行配置。

       从kernel.org获取Linux kernel 5.源码,解压并编译生成Image文件。

       同时,编译kernel modules,存放在指定目录。

       使用busybox制作根文件系统:下载最新版本源码,设置交叉编译工具链,重新配置并安装。

       创建rootfs目录,将busybox安装内容复制到其中,包括设置环境变量和设备节点。

       在/etc/init.d/rcS脚本中,rcS会挂载文件系统、处理热插拔和设置eth0的静态IP。

       理解并配置其他配置文件如/etc/fstab和/etc/profile。

       如果需要,可以尝试基于ram的内存文件系统,使用cpio工具制作initramfs或gzip压缩。

       如果需要持久化,制作基于硬盘的文件系统。

       最后,使用qemu命令启动内核并通过串口登录。

       对于更详细的步骤和示例,可以参考我的文章《Linux随笔录》,回复关键字"busybox"获取相关资源。作者潘小帅,热衷于Linux底层技术,喜欢分享原创文章,也欢迎关注微信公众号Linux随笔录,一同探讨技术与生活。感谢您的支持和关注!

掌握QEMU虚拟化技术:搭建ARM+Linux调试环境实战指南

       本文详细介绍了如何在Ubuntu .系统上搭建ARM架构的Linux调试环境,利用QEMU虚拟化技术。首先,确保主机系统安装了最新的Ubuntu .版本,QEMU模拟ARM处理器,并选择最新Linux内核。

       安装步骤如下:

安装编译工具链:检查并安装必要的版本,通过官方仓库或源码编译。

QEMU安装:通过仓库安装QEMU 2.1ubuntu,检查安装版本,源码安装时需要注意可能遇到的编译错误。

根文件系统构建:从Busybox官网下载源码,配置为编译特定工具并开启静态库选项,处理可能的ncurses库依赖问题。

根文件系统结构补充:在根目录添加必要的目录如etc、dev和lib,配置文件以指定挂载文件系统。

编译内核:从官方下载源码,指定编译工具,配置内核选项,如添加hotplug和initramfs支持,确保内核页配置正确。

模拟磁盘与文件共享:使用模拟磁盘挂载根文件系统,以保持数据持久性。通过qemu与主机文件共享,测试动态链接应用程序。

内核模块测试与调试:创建Makefile和驱动测试文件,进行交叉编译和在qemu上加载驱动,使用GDB进行内核模块调试。

Eclipse可视化调试:安装arm-none-eabi-gdb和Java环境,配置Eclipse-CDT以支持ARM架构,利用Eclipse进行内核单步调试。

       通过以上步骤,你将成功搭建一个适合ARM+Linux调试的环境,进行内核开发和调试工作。

Arm Linux 调试-QEMU调试环境 搭建

       ARM Linux调试,尤其是针对QEMU虚拟机环境的搭建,是开发者进行嵌入式系统开发的重要环节。QEMU,全称Quick Emulator,是一个开源的模拟器,支持多种架构,包括ARMv8。安装QEMU可通过两种方式:直接通过包管理器如apt-get安装全架构的qemu-system或针对x架构的qemu-system-x,或者选择源码编译以获取更全面的支持。

       QEMU的启动参数设计灵活,支持ATF启动、UEFI启动、u-boot启动和Linux kernel启动。对于使用Linux kernel协议的guest,如非ELF文件,DTB(Device Tree Blob)的地址会被传递到相应寄存器。而对于bare-metal类型的引导,DTB位于RAM的起始地址。Flash memory和RAM的配置对于引导过程至关重要,例如,Flash1用于装载ATF FIP格式的Image,包含BL2、BL、BL(可能包含Image而非U-Boot),而Flash0用于装载BL(可能为QEMU_EFI.fd,可替代U-Boot)。

       在QEMU的virt平台上,启动过程涉及BootRom加载BL2,BL2加载BL3,随后BL执行引导。QEMU支持两种引导方式,针对不同的引导方式,客户代码定位DTB的方式有所差异。具体启动实例中,QEMU会根据硬件配置自动将DTB加载到特定的物理地址,可以通过GDB调试工具在启动时查看寄存器信息,确认DTB加载位置。

       若需要深入了解和分析DTB,QEMU提供了dump功能,将virt machine的DTB导出并转换为DTS格式。对于ARMv8的支持、virt machine的详细信息以及QEMU调试ARM内核的方法,相关参考资料可供查阅。

copyright © 2016 powered by 皮皮网   sitemap