皮皮网

【通达信明日涨停公式源码】【promise的源码】【前端源码 花瓣】图像识别源码

来源:影视大全源码 时间:2025-01-17 09:21:48

1.JavaCV的图像摄像头实战之八:人脸检测
2.用c++做图像识别
3.JS识别照片或中的二维码 -OpencvQr
4.opencv中LBPH算法
5.FPGA高端项目:FPGA帧差算法图像识别+目标跟踪,提供11套工程源码和技术支持
6.10分钟!识别用Python实现简单的源码人脸识别技术(附源码)

图像识别源码

JavaCV的摄像头实战之八:人脸检测

       欢迎探索我的GitHub页面,这里集合了我一系列原创文章和配套源码,图像涵盖了从基础到进阶的识别JavaCV摄像头实战教程。在本文中,源码通达信明日涨停公式源码我们将深入探讨人脸检测技术的图像实际应用。

       人脸检测作为计算机视觉领域的识别重要分支,对于许多应用程序至关重要,源码例如人脸识别、图像安防监控等。识别在JavaCV框架中,源码实现这一功能需要调用一些核心库函数和算法。图像本文将通过一个具体实例——人脸检测服务接口DetectService和主程序PreviewCameraWithDetect的识别实现,展示如何将理论知识转化为代码实践。源码

       首先,我们设计并实现了一个名为DetectService的服务接口,该接口定义了一系列与人脸检测相关的功能,例如初始化人脸检测器、检测图像中的人脸等。通过这个接口,我们可以轻松地在不同的应用场景中调用人脸检测功能。

       接下来,让我们关注到主程序PreviewCameraWithDetect。这个程序的主要目标是在实时摄像头流中实时检测并显示人脸。程序首先启动摄像头捕获,promise的源码然后通过调用DetectService接口中的方法,对每一帧图像进行人脸检测。当检测到人脸时,程序会在图像上标记出来,并显示在屏幕上,提供直观的视觉反馈。

       为了实现这一功能,我们需要借助JavaCV库中提供的各种图像处理和算法工具。通过精心设计的算法流程,我们可以确保人脸检测的准确性和实时性。此外,程序还支持自定义参数调整,以适应不同的摄像头环境和光照条件,提高检测效果。

       总的来说,本文通过实战案例展示了JavaCV在人脸检测应用中的强大能力。从理论到实践,从接口设计到主程序实现,每一步都充满了挑战与收获。希望本文能激发更多开发者对计算机视觉领域的兴趣,并在实际项目中发挥重要作用。

       在学习和探索计算机视觉技术的路上,你并不孤单。我将持续分享更多原创内容和实践案例,与你一同成长。前端源码 花瓣关注我的知乎账号——程序员欣宸,与我一起在技术的海洋中遨游吧!

用c++做图像识别

       æœ‰ä¸ªå¤§è‡´æ€è·¯ï¼š 首先读一下两张图片,将图像二值化,把其有效点给分离出来,然后将图片用0和1两个值进行表示,然后将图片每一个像素点转换为数组数据,然后根据规定坐标到数组里面判定,最后返回结果。应该会用上“图片灰度化算法”,“图片中值滤波算法”,等比较重要的算法。 用C++的话,应该用opencv吧,我有个同学做人脸识别的,就用这个类库。用opencv试一试吧 /projects/opencvlibrary

JS识别照片或中的二维码 -OpencvQr

       已将构建的opencvjs库封装为npm包 opencv-qr@0.5.0 。可直接安装使用!!!

       场景:

       介绍一种在线识别发票照片中的二维码方法,通过使用本地编译的OpenCV库并集成wechat_qrcode引擎,实现对复杂场景下二维码的高精度识别。该方法在线测试地址为:leidenglai.github.io/op...

       源码: leidenglai/opencv-js-qrcode · GitHub

       加载二维码识别引擎:

       采用本地编译的OpenCV和wechat_qrcode组件构建二维码识别引擎。在选择过程中,对比了多种二维码识别库,最终选择了OpenCV,因其实现了WebAssembly版本,适合在线环境使用。经过多次尝试和解决编译问题后,实现了三方组件的集成。识别引擎加载完成后,通过window.cv调用OpenCV方法。

       加载模型文件:

       识别引擎依赖于特定的CNN模型文件,包括Detector model和Super scale model。这些文件在GitHub上获得,用于加载到引擎中进行图像解析。加载过程涉及将模型文件转换为Uint8Array,并调用特定方法实例化引擎。王者棋牌源码

       识别过程:

       针对特定需求,优化了图像加载过程,仅截取左上角的发票二维码区域,以提高识别效率。实测结果显示,OpenCV在处理复杂场景下图像时,识别准确率高且耗时相对较短,对比jsqr库,OpenCV性能更优。

       识别旋转二维码:

       即使被旋转或图像质量不佳,OpenCV仍然能准确识别二维码。与jsqr库相比,OpenCV在处理旋转图像方面表现更为出色。

       电子二维码识别:

       对于电子发票,OpenCV同样能高效识别二维码信息。与QRjs库相比,OpenCV在电子二维码识别场景下表现良好,但在效率上略有差异。

       浏览器兼容性:

       考虑到WebAssembly的兼容性,现代浏览器普遍支持OpenCV库,使得该方法在不同环境下均能稳定运行。

       总结:

       使用本地编译的OpenCV和wechat_qrcode组件构建的识别引擎,适合处理复杂场景下的二维码识别需求。虽然编译过程较为繁琐,但OpenCV提供了强大的easyui 源码 pdf图像处理能力,扩展了前端的识别应用范围。WebAssembly特性的引入,为前端开发者提供了更多可能性,推动了技术的边界。

opencv中LBPH算法

       人脸识别技术旨在将待识别的人脸与数据库中的人脸进行匹配,类似于指纹识别。它与人脸检测不同,人脸检测是在图像中定位人脸,实现搜寻功能。从OpenCV2.4版本开始,引入了FaceRecognizer类,用于人脸识别,便于进行相关实验。

       LBP算子最初定义为在3*3窗口内,以中心像素为阈值,比较周围8个像素的灰度值。若周围像素值大于或等于中心像素值,则标记为1,否则为0。3*3邻域内的8个点经过比较,可产生8位二进制数,即LBP码(共种),反映该区域的纹理特征。

       原始LBP算子存在局限性,研究人员对其进行了改进和优化。以下为几种改进方法:

       1.1 圆形LBP算子:将3*3邻域扩展到任意邻域,用圆形邻域代替正方形邻域,允许在半径为R的圆形邻域内有任意多个像素点。

       1.2 旋转不变模式:不断旋转圆形邻域得到一系列初始定义的LBP值,取最小值作为该邻域的LBP值,实现旋转不变性。

       1.3 等价模式:Ojala提出采用“等价模式”来对LBP算子的模式种类进行降维,减少二进制模式的种类。

       2LBP特征用于检测的原理:LBP算子在每个像素点得到一个LBP编码,对图像提取LBP算子后,得到的原始LBP特征依然是“一幅”。实际应用中,一般采用LBP特征谱的统计直方图作为特征向量进行分类识别。

       3 LBPH人脸识别关键部分源码:以OpenCV2.4.9为例,LBPH类源码位于opencv2.4.9\sources\modules\contrib\src\facerec.cpp。LBPH使用圆形LBP算子,默认情况下,圆的半径为1,采样点P为8,x方向和y方向上的分区个数为8,即有8*8=个分区。相似度阈值小于该值时才会产生匹配结果。

       4 LBP人脸识别示例:示例代码中使用的人脸库是AT&T人脸库,共张人脸照片。示例程序中用一个CSV文件指明人脸数据库文件及标签,每一行包含一个文件名路径之后是其标签值,中间以分号分隔。

FPGA高端项目:FPGA帧差算法图像识别+目标跟踪,提供套工程源码和技术支持

       本文介绍了一项高端的FPGA项目,利用FPGA实现帧差算法进行图像识别和目标跟踪。项目包含套针对不同FPGA型号和输入源的工程源码,涵盖了Xilinx(如Artix7、Kintex7、Zynq、Zynq)和Altera(如Cyclone IV)系列,以及各种分辨率和输入方式,如OV、OV摄像头和HDMI输入。

       设计流程从视频采集开始,通过FPGA采集输入视频,使用FDMA图像缓存架构存储并处理视频。接着,进行RGB转灰度、帧差计算、中值滤波、图像腐蚀膨胀,最终框出运动目标。工程源码详细说明了每套方案的FPGA型号、输入输出参数、HDMI编码方式以及适用的开发板,提供给在校学生、研究生和在职工程师进行项目开发或研究。

       项目设计原理框图清晰地展示了运动目标检测过程,以及针对不同输入源的处理方法,包括OV和OV的i2c配置。每个工程都配备了详细的上板调试步骤和所需设备,包括FPGA开发板、摄像头和显示器。此外,还有高清HDMI输入版本的演示效果。

       福利部分,本文提供了工程源码的获取方式,以网盘链接形式,方便读者下载。同时,博主根据用户反馈,还提供了个性化服务以满足不同用户的需求。

分钟!用Python实现简单的人脸识别技术(附源码)

       Python实现简单的人脸识别技术,主要依赖于Python语言的胶水特性,通过调用特定的库包即可实现。这里介绍的是一种较为准确的实现方法。实现步骤包括准备分类器、引入相关包、创建模型、以及最后的人脸识别过程。首先,需确保正确区分人脸的分类器可用,可以使用预训练的模型以提高准确度。所用的包主要包括:CV2(OpenCV)用于图像识别与摄像头调用,os用于文件操作,numpy进行数学运算,PIL用于图像处理。

       为了实现人脸识别,需要执行代码以加载并使用分类器。执行“face_detector = cv2.CascadeClassifier(r'C:\Users\admin\Desktop\python\data\haarcascade_frontalface_default.xml')”时,确保目录名中无中文字符,以免引发错误。这样,程序就可以识别出目标对象。

       然后,选择合适的算法建立模型。本次使用的是OpenCV内置的FaceRecognizer类,包含三种人脸识别算法:eigenface、fisherface和LBPHFaceRecognizer。LBPH是一种纹理特征提取方式,可以反映出图像局部的纹理信息。

       创建一个Python文件(如trainner.py),用于编写数据集生成脚本,并在同目录下创建一个文件夹(如trainner)存放训练后的识别器。这一步让计算机识别出独特的人脸。

       接下来是识别阶段。通过检测、校验和输出实现识别过程,将此整合到一个统一的文件中。现在,程序可以识别并确认目标对象。

       通过其他组合,如集成检测与开机检测等功能,可以进一步扩展应用范围。实现这一过程后,你将掌握Python简单人脸识别技术。

       若遇到问题,首先确保使用Python 2.7版本,并通过pip安装numpy和对应版本的opencv。针对特定错误(如“module 'object' has no attribute 'face'”),使用pip install opencv-contrib-python解决。如有疑问或遇到其他问题,请随时联系博主获取帮助。