【源码模板制作助手】【牛小二源码】【asp源码 精品教学】概率计算源码_概率计算网站

1.强化学习ppo算法源码
2.boruta源代码中涉及到的概率概率二项分布假设检验
3.CUDA编程OneFlow Softmax 算子源码解读之WarpSoftmax
4.如何理解深度学习源码里经常出现的logits?
5.XGBoost源码解读
6.dnorm()在r语言中是什么意思?

概率计算源码_概率计算网站

强化学习ppo算法源码

       在大模型训练的四个阶段中,强化学习阶段常常采用PPO算法,计算计算深入理解PPO算法与语言模型的源码融合可通过以下内容进行学习。以下代码解析主要参考了一篇清晰易懂的网站文章。

       通过TRL包中的概率概率PPO实现,我们来逐步分析其与语言模型的计算计算源码模板制作助手结合过程。核心代码涉及到question_tensors、源码response_tensors和rewards,网站分别代表输入、概率概率模型生成的计算计算回复和奖励模型对输入加回复的评分。

       训练过程中,源码trainer.step主要包含以下步骤:

       首先,网站将question_tensors和response_tensors输入语言模型,概率概率获取all_logprobs(每个token的计算计算对数概率)、logits_or_none(词表概率)、源码values(预估收益)和masks(掩码)。其中,如果没有设置return_logits=True,logits_or_none将为None,若设置则为[batch_size, response_length, vocab_size]。

       接着,将输入传递给参考语言模型,得到类似的结果。

       计算reward的过程涉及reference model和reward model,最终的奖励rewards通过compute_rewards函数计算,参考公式1和2。

       计算优势advantage,依据公式3和4调整。

       在epoch和batch中,对question_tensors和response_tensors再次处理,并设置return_logits=True,进入minbatch训练。牛小二源码

       训练中,loss分为critic_loss(评论家损失,参考公式8)和actor_loss(演员损失,参考公式7),两者通过公式9合并,反向传播更新语言模型参数。

       PPO相较于TRPO算法有两大改进:PPO-Penalty通过拉格朗日乘数法限制策略更新的KL散度,体现在actor_loss中的logprobs - old_logprobs;PPO-Clip则在目标函数中设定阈值,确保策略更新的平滑性,pg_losses2(加上正负号)部分体现了这一点。

       对于初学者来说,这个过程可能有些复杂,但理解和实践后,将有助于掌握PPO在语言模型中的应用。参考资源可继续深入学习。

boruta源代码中涉及到的二项分布假设检验

       假设检验是概率统计学中的基础,它基于小概率事件反证法思想,用于验证样本数据对总体假设是否可信。如果观察到的样本特征与原假设大相径庭,这促使我们怀疑原假设的真实性,并可能拒绝之。

       在Boruta算法中,特征保留与否通过0-1编码反映。为了探究最终特征选择是纯随机性影响结果,自然想到应用二项分布假设检验。算法内部在每轮迭代时执行此检验,以确认选择结果并非纯粹基于偶然性。

       通过引入Bonferroni校正,Boruta算法对每次假设检验应用更加严格的显著性水平,确保在多轮检验中不因偶然性导致误判。原假设显著性水平为0.时,asp源码 精品教学次检验要求显著性为0./=0.,这在一定程度上过于苛刻,易导致弱关联性特征被错误删除。

       Boruta通过调整假设检验的显著性水平,引入了更灵活的FDR(False Discovery Rate)方法。其中,FDR的计算使用Bonferroni Holm修正法(BH检验),以确保检测的差异性不被随机性误判。举例来说,若总共有6次检验结果需要校正,按照α=0.,第四次检验的P值小于α*k/m(其中k=4,m=6)条件,表明排名第一至第四的检验结果为显著差异。

       Boruta的源代码简单明了,通过计算累计分布函数(CDF)以评估特征重要性的分布情况。特征选择的过程既包含单轮迭代内的概率分析,也涉及多次迭代的校正策略。最终,通过比较C值与设定的显著性阈值alpha(默认0.),来决定是否接受或拒绝特征。

       Boruta算法中的二项分布假设检验及其后续的校正方法,共同作用于确保特征选择过程的可靠性与严谨性。理解此流程的完整步骤需要对二项分布假设检验以及FDR的计算逻辑有深入的掌握,源代码提供了直观的操作指南,辅助用户高效实现这一复杂而关键的任务。

CUDA编程OneFlow Softmax 算子源码解读之WarpSoftmax

       深度学习框架中的Softmax操作在模型中扮演关键角色,尤其在多分类任务中,其用于将logits映射成概率分布,或在Transformer结构中衡量query与key的相似度。Softmax的斗地址棋牌源码CUDA实现直接关系到模型训练效率。本文以OneFlow框架中的一种优化Softmax实现为例,即Warp级别的Softmax,特别适用于矩阵宽度不超过的场景。

       Softmax操作的计算公式如下:

       [公式]

       为解决数值溢出问题,通常先减去向量的最大值。优化后的公式为:

       [公式]

       Softmax计算涉及五个关键步骤:reduceMax、broadcastSub、exp、reduceSum、broadcastDiv。本篇文章将深入探讨OneFlow源码中的实现技巧。

       OneFlow采用分段函数优化SoftmaxKernel,针对不同数量的列选择不同实现策略,以适应各种场景。为实现优化,OneFlow提供三种Softmax实现方式,以期在所有情况下达到较高的有效带宽。

       对于WarpSoftmax分支,源码中函数调用关系清晰,实现细节分为四部分:数据Pack、调用链、DispatchSoftmaxWarpImpl、DispatchSoftmaxWarpImplCols、DispatchSoftmaxWarpImplPadding、LaunchSoftmaxWarpImpl。各部分分别专注于提升访问带宽、确定函数参数、实现核心计算逻辑。

       在WarpSoftmax的核函数SoftmaxWarpImpl中,重点实现以下步骤:核函数启动参数确定、线程网格形状定义、dnf网页钓鱼源码数据加载到寄存器、计算最大值、计算指数和、规约操作、通信优化等。实现过程中,OneFlow通过优化数据访问模式、利用寄存器存储中间结果、并行规约操作,以及束内通信,提升了计算效率。

       总结WarpSoftmax源码中的关键点,本文详细解读了其优化策略与实现细节,旨在提高模型训练速度。通过深入分析OneFlow框架中的Softmax实现,读者可以更全面地理解深度学习框架在CUDA环境下进行优化的策略。

如何理解深度学习源码里经常出现的logits?

深度学习的秘钥:揭示logits的真面目

       在深度学习的源码世界中,logits一词频繁出现,它似乎隐藏着某种魔力。那么,logits究竟是什么?它与我们熟知的概率计算有何关联?让我们一探究竟,揭示这个术语背后的深层含义。(p - 李航《统计学习方法》)

       首先,logits是概率学中的一个重要概念,它并非简单的对数,而是事件发生与不发生比值的对数形式。想象一下,当某个事件发生的概率为p时,其logits可以这样表示:\[ \text{ logits} = \log\left(\frac{ p}{ 1-p}\right) \](p - TensorFlow官方文档)

       当我们将logits与深度学习中的softmax层联系起来,你会发现它们之间的紧密关系。softmax层的作用是将一组未归一化的数值(即logits)转换为一个概率分布,确保所有概率值之和为1。在TensorFlow中,我们通常称这些未经过归一化的数值为logits,而不是它们的数学定义。

       实际上,logits在深度学习模型中扮演着未加工的概率值角色,它们是概率分布的起点。softmax层通过对logits进行加和运算,将其转变为一个清晰、可解释的概率矩阵。理解这一点至关重要,因为logits的计算结果直接影响着模型的决策过程和最终预测。

       总结来说,logits在深度学习中是未归一化的概率表示,它们是softmax函数运算的起点,是模型输出概率分布的基础。掌握这个概念,就能更好地解析和解读源码中的logits,从而深入理解模型的工作原理。(p - TensorFlow官方教程)

XGBoost源码解读

       前言

       XGBoost是一代神器,其推理逻辑独树一帜,与Glove等相似,皆以思考出发,推导出理想结果。高斯正是这种思维的典范,XGBoost的代码实现也异常精妙,本文尝试将两者相结合,供您参考。

       高斯的做法

       优化目标设定,以均值为目标函数的导数为零。利用线性假设推导目标函数,进而优化以误差平方项为出发点。

       进一步,高斯将误差目标公式推广到参数求解中,实现优化。

       Glove的做法

       通过log-bilinear models, LBL启发,寻找满足概率约束的目标表达式,并推导出指数函数,从而实现类似LSA的因子分解。

       引入优化权重函数,最终实现最大似然估计。

       XGBoost的做法

       引入Stagewise限制,目标为找到最优的叶子节点,以最佳方式拆分,优化损失。

       通过泰勒展开,结合叶子节点权重假设,推导出目标公式。

       基于贪心算法,实现树的生长。

       代码解读

       从命令行入口开始,核心代码框架包括数据加载、初始化、循环训练与模型保存。训练过程包括计算样本预测结果、一阶和二阶梯度计算以及Boost操作。

       DoBoost实现GBLine和GBTree两种方式,提供GradientBooster核心函数,如DoBoost、PredictLeaf、PredictBatch等。

       默认采用GBTree,对于线性部分,效果难与非线性分类器相比。

       代码基本框架集成了DMLC的注册使用机制,插件式管理实现更新机制。

       实现精准和近似算法,主要关注ColMaker更新实现。在GBTree的DoBoost中,生成并发新树,更新ColMaker和TreePruner。

       ColMaker实现包括Builder与EnumerateSplit,最终依赖于TreeEvaluator的SplitEvaluator。

       SplitEvaluator实现树的分拆,对应论文中的相关函数,包括Gain计算、权重计算、单个叶子节点Gain计算与最终损失变化。

       本文仅作为案例介绍,XGBoost在近似计算、GPU计算与分布式计算方面也极具亮点。

       小结

       本文通过对比分析高斯、Glove与XGBoost的优化策略,展示了研究与工程结合的实践,强调在追求性能的同时,不能忽视效果的重要性。

dnorm()在r语言中是什么意思?

       关于dnorm在r语言中的意思如下:

       dnorm() 是R语言中正态分布的概率密度函数,d代表density,norm代表正态分布,返回给定x在标准正态分布下的概率密度

       对于一个给定的正态分布,X ~ N(u,2),u代表均值,2代表方差,dnorm()可以计算给定x下的概率密度,即P(X<=xu=a,o=b),比如,对于标准正态分布 X ~ N(0,1),要计算x=1时的概率密度,即dnorm(1)=P(X<=1l=0,o=1)。

扩展知识:

       R语言是用于统计分析、绘图的语言和操作环境。R语言是属于GNU系统的一个自由、免费、源代码开放的软件,它是一个用于统计计算和统计制图的优秀工具。它可以运行于Windows和Macintosh的操作系统上,而且嵌入了一个非常方便实用的帮助系统,相比于其他统计分析软件,R语言还有以下特点:

       1、R语言是自由软件。这意味着它是完全免费,开放源代码的。可以在它的网站及其镜像中下载任何有关的安装程序、源代码、程序包及其源代码、文档资料。标准的安装文件自身就带有许多模块和内嵌统计函数,安装好后可以直接实现许多常用的统计功能。

       2、R语言是一种可编程的语言。作为一个开放的统计编程环境,语法通俗易懂,很容易学会和掌握语言的语法。而且学会之后,我们可以编制自己的函数来扩展现有的语言。这也就是为什么它的更新速度比一般统计软件,如SPSS、SAS等快得多。大多数最新的统计方法和技术都可以在R语言中直接得到。 

       3、所有R的函数和数据集是保存在程序包里面的。只有当一个包被载入时,它的内容才可以被访问。一些常用、基本的程序包已经被收入了标准安装文件中,随着新的统计分析方法的出现,标准安装文件中所包含的程序包也随着版本的更新而不断变化。

       4、R语言具有很强的互动性。除了图形输出是在另外的窗口处,它的输入输出窗口都是在同一个窗口进行的,输入语法中如果出现错误会马上在窗口中得到提示,对以前输入过的命令有记忆功能,可以随时再现、编辑修改以满足用户的需要。输出的图形可以直接保存为JPG、PNG等格式,还可以直接保存为PDF文件。

更多内容请点击【娱乐】专栏