【春节网站源码】【手机挖矿app 源码】【iebook成品代源码】softmax源码
1.如何理解深度学习源码里经常出现的logits?
2.[fastllm]fastllm源码结构解析
3.[fastllm]cuda-kernels源码解析
4.(论文加源码)基于deap的四分类脑电情绪识别(一维CNN+LSTM和一维CNN+GRU
5.GroupSoftmax:利用COCO和CCTSDB训练83类检测器
6.必知必会的VGG网络(含代码)
如何理解深度学习源码里经常出现的logits?
深度学习的秘钥:揭示logits的真面目
在深度学习的源码世界中,logits一词频繁出现,它似乎隐藏着某种魔力。那么,logits究竟是什么?它与我们熟知的概率计算有何关联?让我们一探究竟,揭示这个术语背后的春节网站源码深层含义。(p - 李航《统计学习方法》)
首先,logits是概率学中的一个重要概念,它并非简单的对数,而是事件发生与不发生比值的对数形式。想象一下,当某个事件发生的概率为p时,其logits可以这样表示:\[ \text{ logits} = \log\left(\frac{ p}{ 1-p}\right) \](p - TensorFlow官方文档)
当我们将logits与深度学习中的softmax层联系起来,你会发现它们之间的紧密关系。softmax层的作用是将一组未归一化的数值(即logits)转换为一个概率分布,确保所有概率值之和为1。在TensorFlow中,我们通常称这些未经过归一化的数值为logits,而不是它们的数学定义。
实际上,logits在深度学习模型中扮演着未加工的概率值角色,它们是概率分布的起点。softmax层通过对logits进行加和运算,将其转变为一个清晰、可解释的概率矩阵。理解这一点至关重要,因为logits的计算结果直接影响着模型的决策过程和最终预测。
总结来说,logits在深度学习中是未归一化的概率表示,它们是softmax函数运算的起点,是模型输出概率分布的基础。掌握这个概念,就能更好地解析和解读源码中的logits,从而深入理解模型的工作原理。(p - TensorFlow官方教程)
[fastllm]fastllm源码结构解析
fastllm源码结构解析 主要文件结构和继承关系如下: main包含factoryllm工厂,用于生成各种llm模型实例,basellm作为基类,包含通用方法和参数,所有模型使用相同的命名空间,fastllm为基本类,定义数据格式、权重映射和基础算子操作。 fastllm类属性解析:SetThreads(int t): 设置线程数
SetLowMemMode(bool m): 设置低内存模式
LowBitConfig: 包含量化参数,提供量化与反量化方法
DataType: 包括浮点、int8、手机挖矿app 源码int4等数据类型
DataDevice: 包含CPU与CUDA
WeightType: 包括LINEAR、EMBEDDING和None
Data: 包括形状、大小、扩容信息,量化配置等,提供复制、分配、预扩容等功能
Tokenizer: 包含TrieNode链表和token-to-string字典,提供插入、编码和解码函数
WeightMap: 存储模型名称与数据内存,支持从文件加载和保存低位量化权重
core类操作分析:Embedding: 根据输入与权重计算输出
RMSNorm: L2归一化后乘以权重
LayerNorm: 使用gamma、beta进行层归一化
Linear: 线性变换
Split: 按轴分割数据
Cat: 按轴拼接数据
MatMulTransB: 多线程下矩阵转置乘法
Softmax: 激活函数
Silu: SiLU激活函数
GeluNew: 新型Gelu激活函数
Mul: 矩阵与浮点数乘法
MulTo: 点乘
AddTo: 点加操作(带alpha和不带alpha)
AttentionMask: 根据mask值替换
Permute: 数据通道转换
ToDevice: 数据迁移至GPU
basellm作为抽象类,继承自fastllm,包含纯虚函数如加载权重、模型推理、保存低比特模型、热身等。 chatglm、moss和vicuna继承自basellm,实现具体模型,函数与basellm类似。 fastllm结构体与属性解析:FileBuffer: 文件读写操作,包括读取各种类型数据和文件写操作
Data操作: 包括数据拷贝、统计、扩容、转置、计算权重和等
Tokenizer方法: 包括初始化、清空、插入、编码和解码
WeightMap方法: 包括从文件加载和保存低位量化权重
fastllm方法: 包括矩阵转置、通道转换、数据迁移、多线程乘法、激活函数等
[fastllm]cuda-kernels源码解析
在fastllm中,CUDA-kernels的使用是关键优化点之一,主要涉及以下几个高频率使用的kernel:gemv_int4、gemv_int8、gemm_int8、RMSNorm、softmax、RotatePosition2D、swiglu等。其中,gemm是iebook成品代源码计算密集型的,而其余大部分都是内存受限型。利用量化bit进行计算,比原始的torch转为浮点数更快,同时,没有进行融合操作,为后续优化留下了空间。
gemv_int4 kernel:主要用于实现float*int4的GEMV乘积,其中偏置值设定为最小值。在计算中,矩阵被划分为不同的tile,不同tile之间并行操作。在遍历m/2的过程中,找到对应int4值的位置,通过保存的mins找到最小值minv。同一组的两个int4值共享同一个minv,计算结果的最终和被保存在sdata[0]上,用于更新对应m列位置的output值。结果向量为n*1。
gemv_int8 kernel:在功能上与gemv_int4类似,但偏置值由保存的minv变为了zeros。
gemm_int8 kernel:此kernel负责计算n*m矩阵与m*k矩阵的乘积。计算过程涉及多个tile并行,block内部保存的是部分和。考虑到线程数量限制,通常会有优化空间。最终结果通过为单位进行更新。
layerNorm实现:此kernel实现layernorm计算,通过计算均值和方差来调整数据分布。计算中,sdata存储所有和,sdata2存储平方和。每个block内计算部分和后,规约得到全局的均值和方差,从而更新output。
RMS kernels解析:RMSNorm kernel实现RMS归一化,通过计算输入的平方和和均值,进而更新output。
softmax kernels解析:计算输入的softmax值,涉及最大值查找、指数计算和规约求和等步骤,以防止浮点数下溢。
RotatePosition2D Kernels解析:用于旋转位置编码,线程展开成三层循环。LlamaRotatePosition2D、友链买卖源码NearlyRotatePosition和RotatePosition2D在旋转方式上有所区别,体现在不同的位置上进行计算。
AttentionMask Kernels解析:对输入按照mask掩码置值,普通mask直接置为maskv,而Alibimask则是置为相对位置的值之和。具体含义可能涉及空间上的概念,但文中未详细说明。
swiglu kernels解析:作为激活函数,这些kernel在原地操作中执行常见函数,线程足够使用,直接按照公式计算即可。
综上所述,fastllm中CUDA-kernels的使用旨在通过优化计算过程和内存操作,提升模型的计算效率,实现更高效的推理和训练。
(论文加源码)基于deap的四分类脑电情绪识别(一维CNN+LSTM和一维CNN+GRU
研究介绍
本文旨在探讨脑电情绪分类方法,并提出使用一维卷积神经网络(CNN-1D)与循环神经网络(RNN)的组合模型,具体实现为GRU和LSTM,解决四分类问题。所用数据集为DEAP,实验结果显示两种模型在分类准确性上表现良好,1DCNN-GRU为.3%,1DCNN-LSTM为.8%。
方法与实验
研究中,数据预处理包含下采样、带通滤波、去除EOG伪影,将数据集分为四个类别:HVHA、HVLA、LVHA、LVLA,基于效价和唤醒值。选取个通道进行处理,提高训练精度,减少验证损失。数据预处理包括z分数标准化与最小-最大缩放,以防止过拟合,提高精度。实验使用名受试者的所有预处理DEAP数据集,以::比例划分训练、验证与测试集。
模型结构
采用1D-CNN与GRU或LSTM的混合模型。1D-CNN包括卷积层、最大池层、qq群文件源码GRU或LSTM层、展平层、密集层,最终为4个单元的密集层,激活函数为softmax。训练参数分别为.和.。实验结果展示两种模型的准确性和损失值,1DCNN-LSTM模型表现更优。
实验结果与分析
实验结果显示1DCNN-LSTM模型在训练、验证和测试集上的准确率分别为.8%、.9%、.9%,损失分别为6.7%、0.1%、0.1%,显著优于1DCNN-GRU模型。混淆矩阵显示预测值与实际值差异小,F1分数和召回值表明模型质量高。
结论与未来工作
本文提出了一种结合1D-CNN与GRU或LSTM的模型,用于在DEAP数据集上的情绪分类任务。两种模型均能高效地识别四种情绪状态,1DCNN-LSTM表现更优。模型的优点在于简单性,无需大量信号预处理。未来工作将包括在其他数据集上的进一步评估,提高模型鲁棒性,以及实施k-折叠交叉验证以更准确估计性能。
GroupSoftmax:利用COCO和CCTSDB训练类检测器
在CV领域,工程师常利用YOLO、Faster RCNN、CenterNet等检测算法处理业务数据,旨在优化模型性能。然而,当模型在实际业务中发挥作用时,CEO的质疑往往紧随而来。为解决这一问题,我们设计了GroupSoftmax交叉熵损失函数,以解决模型训练的三大挑战。该函数允许类别合并,形成新的组合类别,从而在训练时计算出各类别对应梯度,完成网络权重更新。理论上,GroupSoftmax交叉熵损失函数兼容多种数据集联合训练。
我们利用了COCO和CCTSDB数据集,基于Faster RCNN算法(SyncBN),联合训练了一个包含类的检测器。在COCO_minival测试集上,使用GroupSoftmax交叉熵损失函数训练的模型在mAP指标上提升了0.7个点,达到.3,相比原始Softmax交叉熵损失函数,性能显著提升。此外,我们还训练了一个trident*模型,6个epoch在COCO_minival测试集上的mAP为.0,充分验证了GroupSoftmax交叉熵损失函数的有效性。
基于SimpleDet检测框架,我们实现了mxnet版本的GroupSoftmax交叉熵损失函数,并在GitHub上开源了源码。GroupSoftmax交叉熵损失函数的原理在于允许类别合并形成群组,计算群组类别概率的交叉熵损失,进而对激活值进行梯度计算。具体而言,当目标类别属于某个群组类别时,其梯度为群组类别梯度与子类别预测概率的比值。这样,GroupSoftmax交叉熵损失函数在处理类别合并情况时,能够有效更新网络权重。
实现GroupSoftmax交叉熵损失函数时,需要注意以下几点:
1. 对于未标注类别的数据集,可理解为与背景组成新的群组类别。
2. 在两阶段检测算法中,RPN网络应根据数据集特性调整为多分类,以适应模型训练需求。
3. 联合训练COCO和CCTSDB数据集时,最终分类任务为1+类,未标注类别的数据集可与背景组成组合类别。
4. 编写CUDA代码时,计算群组类别概率时,需加微小量避免分母为0导致的计算错误。
必知必会的VGG网络(含代码)
牛津大学的视觉几何组设计的VGGNet,一种经典卷积神经网络架构,曾在年ILSVRC分类任务中获得第二名。现今,VGG依然广泛应用于图像识别、语音识别、机器翻译、机器人等领域。VGG包含层(VGG-)和层(VGG-),结构相似,由个卷积层和3个全连接层组成。与之前网络相比,VGG采用3*3卷积核替代7x7卷积核,2*3卷积核替代5*5卷积核,以减少参数,提升深度。
VGG-的结构图显示,包含conv(卷积层)、pool(池化层)和最后三个fc(全连接层)。VGG通过减少参数量,使得网络结构更加紧凑,从而提升模型的性能。
VGG-采用五组卷积与三个全连接层,最后使用Softmax进行分类。每个卷积层的参数量通过公式计算得出。特征图计算公式为输出图像大小(O)等于(输入图像大小(I)+2*填充(P)-卷积核大小(K))/步长(S)+1。
VGG-的代码实现可以通过构建一个Layer类,通过循环添加每个层的顺序执行来实现。具体代码可在关注公众号CV算法恩仇录后,回复VGG源码获取。
了解更多关于VGG的细节,请参阅相关链接:《VGG网络细节》 shimo.im/docs/dPkpKKErv...、《VGG网络》 blog.csdn.net/weixin_...
深入理解VGG,可参考《一文读懂VGG》/s/vWuGW4iMD1MjVDZVCqH_FA。
Gumbel-Softmax的MindSpore实现
在一段时间的间隔后,我将注意力转向了MindSpore的相关内容。起因是一位同学询问关于模型迁移的问题,目标是诺亚的一篇ICML论文《SparseBERT: Rethinking the Importance Analysis in Self-attention》中使用了Pytorch特有的Gumbel-Softmax实现,但该实现难以直接移植到MindSpore。因此,我针对这个问题进行了深入研究,并撰写了一篇关于如何在MindSpore中实现Gumbel-Softmax的文章。
Gumbel-Softmax是一种离散采样的可微近似方法,常用于生成模型中,如GAN和VAE,它解决了离散分布采样不可微的问题。具体来说,它通过Gumbel-Max trick和softmax函数构建了一个连续分布,近似离散类别分布,允许反向传播。Gumbel分布通过从均匀分布中随机抽取并计算得出,而Softmax则用于近似argmax操作。
在MindSpore的实现中,我参考了Pytorch的源码和Tensorflow的手写实现,对三个关键点进行了适配,并通过单元测试验证了正确性。测试包括输出的one-hot特性、采样值分布以及与softmax概率的一致性。最终,我用MindSpore实现的Gumbel-Softmax应用于VAE实验,结果与Pytorch版本的Loss下降趋势基本一致,展示了其在实际应用中的可行性。
尽管这篇文章拖延了很长时间,但为了满足对Gumbel-Softmax需求的开发者,我会将其添加到MindSpore的主要仓库中,供更多人使用和开发。如果你对这个功能感兴趣,可以下载代码进行训练对比,或尝试将其应用到其他GAN网络中。
NAS 学习笔记(十三)- NASP
NASP:神经架构搜索算法的革新探索
在探索神经架构搜索(NAS)的无限可能时,我们来到了一篇引人入胜的论文[1]——《通过近端迭代优化的高效神经架构搜索》。本文将聚焦于其中的创新算法NASP,这个在年AAAI会议上发表的杰出之作,旨在解决DARTS[2]的一些关键问题。让我们一同深入理解这个算法如何以独特的方式改进了搜索效率和模型性能。挑战与突破:DARTS的缺陷与NASP的应对
DARTS在搜索过程中面临的主要挑战在于其效率问题。首先,由于使用softmax,网络中所有操作都需要进行前向传播和反向传播,这导致计算成本高昂,且涉及复杂的二阶导数计算。其次,架构性能上,softmax产生的概率分布可能导致操作之间的相关性模糊,难以确定性能差异。此外,DARTS在模型复杂度控制上也显得力不从心。 NASP正是针对这些问题,提出了一种创新的解决方案。它引入了近端梯度算法(Proximal Algorithm,PA),并通过PA的变种——懒惰近端步骤,巧妙地解决了搜索空间的离散化限制。NASP的核心技术
2.1 Proximal Algorithm (PA):NASP作为首个在NAS领域应用PA的尝试,其关键步骤包括迭代优化。通过PA,NASP能够有效地处理离散限制,使其在保持搜索空间可微分的同时,训练模型时保持架构的离散性。 2.2 Search Objective:NASP的独特之处在于它在搜索时保持搜索空间连续,但在训练阶段将架构转换为离散,通过argmax选取每个边上的最优操作。通过正则化项,NASP可以有效控制模型的复杂度,确保搜索到的架构更小、更精简。加速搜索过程:NASP算法的创新
NASP算法的核心在于其搜索算法的革新。传统的PA方法仍然面临计算二阶梯度的挑战,而NASP通过发现离散架构的稳定性,巧妙地跳过了这一过程。作者提出的伪代码展示了这一创新,使得搜索过程更为高效,甚至比最先进的方法快倍以上。总结与启示
阅读NASP,我们不仅看到了离散与连续架构转换的巧妙应用,还领略了PA算法在NAS领域的独特创新。尽管作者开源的源码中大部分基于DARTS,但NASP的实现无疑是对基础框架的一次拓展。它不仅提升了搜索效率,还在模型性能和复杂度控制上实现了显著改进。NASP的故事提醒我们,创新总是在解决现有问题的过程中诞生。 参考文献:Q. Yao, X. Chen, J. T. Kwok, Y. Li, and C.-J. Hsieh. "Efficient Neural Interaction Function Search for Collaborative Filtering." In Proceedings of The Web Conference , , pp. -.
Q. Yao, J. Xu, W.-W. Tu, and Z. Zhu. "Efficient Neural Architecture Search via Proximal Iterations." .
CUDA编程OneFlow Softmax 算子源码解读之WarpSoftmax
深度学习框架中的Softmax操作在模型中扮演关键角色,尤其在多分类任务中,其用于将logits映射成概率分布,或在Transformer结构中衡量query与key的相似度。Softmax的CUDA实现直接关系到模型训练效率。本文以OneFlow框架中的一种优化Softmax实现为例,即Warp级别的Softmax,特别适用于矩阵宽度不超过的场景。
Softmax操作的计算公式如下:
[公式]
为解决数值溢出问题,通常先减去向量的最大值。优化后的公式为:
[公式]
Softmax计算涉及五个关键步骤:reduceMax、broadcastSub、exp、reduceSum、broadcastDiv。本篇文章将深入探讨OneFlow源码中的实现技巧。
OneFlow采用分段函数优化SoftmaxKernel,针对不同数量的列选择不同实现策略,以适应各种场景。为实现优化,OneFlow提供三种Softmax实现方式,以期在所有情况下达到较高的有效带宽。
对于WarpSoftmax分支,源码中函数调用关系清晰,实现细节分为四部分:数据Pack、调用链、DispatchSoftmaxWarpImpl、DispatchSoftmaxWarpImplCols、DispatchSoftmaxWarpImplPadding、LaunchSoftmaxWarpImpl。各部分分别专注于提升访问带宽、确定函数参数、实现核心计算逻辑。
在WarpSoftmax的核函数SoftmaxWarpImpl中,重点实现以下步骤:核函数启动参数确定、线程网格形状定义、数据加载到寄存器、计算最大值、计算指数和、规约操作、通信优化等。实现过程中,OneFlow通过优化数据访问模式、利用寄存器存储中间结果、并行规约操作,以及束内通信,提升了计算效率。
总结WarpSoftmax源码中的关键点,本文详细解读了其优化策略与实现细节,旨在提高模型训练速度。通过深入分析OneFlow框架中的Softmax实现,读者可以更全面地理解深度学习框架在CUDA环境下进行优化的策略。