1.从Linux源码看Socket(TCP)的listen及连接队列
2.linux下socket 网络编程(客户端向服务器端发送文件) 求源代码 大哥大姐帮帮忙 ,。。谢谢
3.TCP之深入浅出send&recv
4.Netty源码-一分钟掌握4种tcp粘包解决方案
5.TCP·IP架构、设计及应用目录
6.零基础5分钟开发一个简单的ModBus TCP主站上位机(附源码)
从Linux源码看Socket(TCP)的listen及连接队列
了解Linux内核中Socket (TCP)的"listen"及连接队列机制是深入理解网络编程的关键。本文将基于Linux 3.内核版本,从源码角度解析Server端Socket在进行"listen"时的阿墨源码具体实现。
建立Server端Socket需要经历socket、bind、listen、accept四个步骤。本文聚焦于"listen"步骤,深入探讨其内部机理。
通过socket系统调用,我们可以创建一个基于TCP的Socket。这里直接展示了与TCP Socket相关联的操作函数。
接着,我们深入到"listen"系统调用。注意,glibc的INLINE_SYSCALL对返回值进行了封装,仅保留0和-1两种结果,并将错误码的绝对值记录在errno中。其中,backlog参数至关重要,图像曝光算法源码设置不当会引入隐蔽的陷阱。对于Java开发者而言,框架默认backlog值较小(默认),这可能导致微妙的行为差异。
进入内核源码栈,我们发现内核对backlog值进行了调整,限制其不超过内核参数设置的somaxconn值。
核心调用程序为inet_listen。其中,除了fastopen外的逻辑(fastopen将在单独章节深入讨论)最终调用inet_csk_listen_start,将sock链入全局的listen hash表,实现对SYN包的高效处理。
值得注意的是,SO_REUSEPORT特性允许不同Socket监听同一端口,实现内核级的负载均衡。Nginx 1.9.1版本启用此功能后,性能提升3倍。
半连接队列与全连接队列是连接处理中的关键组件。通常提及的sync_queue与accept_queue并非全貌,sync_queue实际上是syn_table,而全连接队列为icsk_accept_queue。在三次握手过程中,教程网整站源码这两个队列分别承担着不同角色。
在连接处理中,除了qlen与sk_ack_backlog计数器外,qlen_young计数器用于特定场景下的统计。SYN_ACK的重传定时器在内核中以ms为间隔运行,确保连接建立过程的稳定。
半连接队列的存在是为抵御半连接攻击,避免消耗大量内存资源。通过syn_cookie机制,内核能有效防御此类攻击。
全连接队列的最大长度受到限制,超过somaxconn值的连接会被内核丢弃。若未启用tcp_abort_on_overflow特性,客户端可能在调用时才会察觉到连接被丢弃。启用此特性或增大backlog值是应对这一问题的策略。
backlog参数对半连接队列容量产生影响,导致内核发送cookie校验时出现常见的内存溢出警告。
总结而言,TCP协议在数十年的演进中变得复杂,深入阅读源码成为分析问题的重要途径。本文深入解析了Linux内核中Socket (TCP)的"listen"及连接队列机制,旨在帮助开发者更深入地理解网络编程。手机点单源码
linux下socket 网络编程(客户端向服务器端发送文件) 求源代码 大哥大姐帮帮忙 ,。。谢谢
源代码奉上,流程图。。。这个太简单了,你自己看看。。。。。。。
//TCP
//服务器端程序
#include< stdio.h >
#include< stdlib.h >
#include< windows.h >
#include< winsock.h >
#include< string.h >
#pragma comment( lib, "ws2_.lib" )
#define PORT
#define BACKLOG
#define TRUE 1
void main( void )
{
int iServerSock;
int iClientSock;
char *buf = "hello, world!\n";
struct sockaddr_in ServerAddr;
struct sockaddr_in ClientAddr;
int sin_size;
WSADATA WSAData;
if( WSAStartup( MAKEWORD( 1, 1 ), &WSAData ) )//初始化
{
printf( "initializationing error!\n" );
WSACleanup( );
exit( 0 );
}
if( ( iServerSock = socket( AF_INET, SOCK_STREAM, 0 ) ) == INVALID_SOCKET )
{
printf( "创建套接字失败!\n" );
WSACleanup( );
exit( 0 );
}
ServerAddr.sin_family = AF_INET;
ServerAddr.sin_port = htons( PORT );//监视的端口号
ServerAddr.sin_addr.s_addr = INADDR_ANY;//本地IP
memset( & ( ServerAddr.sin_zero ), 0, sizeof( ServerAddr.sin_zero ) );
if( bind( iServerSock, ( struct sockaddr * )&ServerAddr, sizeof( struct sockaddr ) ) == -1 )
{
printf( "bind调用失败!\n" );
WSACleanup( );
exit( 0 );
}
if( listen( iServerSock, BACKLOG ) == -1 )
{
printf( "listen调用失败!\n" );
WSACleanup( );
exit( 0 );
}
while( TRUE )
{
sin_size = sizeof( struct sockaddr_in );
iClientSock = accept( iServerSock, ( struct sockaddr * )&ClientAddr, &sin_size );
if( iClientSock == -1 )
{
printf( "accept调用失败!\n" );
WSACleanup( );
exit( 0 );
}
printf( "服务器连接到%s\n", inet_ntoa( ClientAddr.sin_addr ) );
if( send( iClientSock, buf, strlen( buf ), 0 ) == -1 )
{
printf( "send调用失败!" );
closesocket( iClientSock );
WSACleanup( );
exit( 0 );
}
}
}
/////客户端程序
#include< stdio.h >
#include< stdlib.h >
#include< windows.h >
#include< winsock.h >
#include< string.h >
#pragma comment( lib, "ws2_.lib" )
#define PORT
#define BACKLOG
#define TRUE 1
#define MAXDATASIZE
void main( void )
{
int iClientSock;
char buf[ MAXDATASIZE ];
struct sockaddr_in ServerAddr;
int numbytes;
// struct hostent *he;
WSADATA WSAData;
// int sin_size;
/* if( ( he = gethostbyname( "liuys" ) ) == NULL )
{
printf( "gethostbyname调用失败!" );
WSACleanup( );
exit( 0 );
}
*/
if( WSAStartup( MAKEWORD( 1, 1 ), &WSAData ) )//初始化
{
printf( "initializationing error!\n" );
WSACleanup( );
exit( 0 );
}
if( ( iClientSock = socket( AF_INET, SOCK_STREAM, 0 ) ) == INVALID_SOCKET )
{
printf( "创建套接字失败!\n" );
WSACleanup( );
exit( 0 );
}
ServerAddr.sin_family = AF_INET;
ServerAddr.sin_port = htons( PORT );
// ServerAddr.sin_addr = *( ( struct in_addr * )he->h_addr );
ServerAddr.sin_addr.s_addr = inet_addr( "..2." );//记得换IP
memset( &( ServerAddr.sin_zero ), 0, sizeof( ServerAddr.sin_zero ) );
if( connect( iClientSock, ( struct sockaddr * ) & ServerAddr, sizeof( struct sockaddr ) ) == -1 )
{
printf( "connect失败!" );
WSACleanup( );
exit( 0 );
}
numbytes = recv( iClientSock, buf, MAXDATASIZE, 0 );
if( numbytes == -1 )
{
printf( "recv失败!" );
WSACleanup( );
exit( 0 );
}
buf[ numbytes ] = '\0';
printf( "Received: %s", buf );
closesocket( iClientSock );
WSACleanup( );
}
/////UDP
//服务器
#include< stdio.h >
#include< string.h >
#include< winsock.h >
#include< windows.h >
#pragma comment( lib, "ws2_.lib" )
#define PORT
#define BACKLOG
#define TRUE 1
#define MAXDATASIZE
void main( void )
{
int iServerSock;
// int iClientSock;
int addr_len;
int numbytes;
char buf[ MAXDATASIZE ];
struct sockaddr_in ServerAddr;
struct sockaddr_in ClientAddr;
WSADATA WSAData;
if( WSAStartup( MAKEWORD( 1, 1 ), &WSAData ) )
{
printf( "initializationing error!\n" );
WSACleanup( );
exit( 0 );
}
iServerSock = socket( AF_INET, SOCK_DGRAM, 0 );
if( iServerSock == INVALID_SOCKET )
{
printf( "创建套接字失败!\n" );
WSACleanup( );
exit( 0 );
}
ServerAddr.sin_family = AF_INET;
ServerAddr.sin_port = htons( PORT );//监视的端口号
ServerAddr.sin_addr.s_addr = INADDR_ANY;//本地IP
memset( & ( ServerAddr.sin_zero ), 0, sizeof( ServerAddr.sin_zero ) );
if( bind( iServerSock, ( struct sockaddr * )&ServerAddr, sizeof( struct sockaddr ) ) == -1 )
{
printf( "bind调用失败!\n" );
WSACleanup( );
exit( 0 );
}
addr_len = sizeof( struct sockaddr );
numbytes = recvfrom( iServerSock, buf, MAXDATASIZE, 0, ( struct sockaddr * ) & ClientAddr, &addr_len );
if( numbytes == -1 )
{
printf( "recvfrom调用失败!\n" );
WSACleanup( );
exit( 0 );
}
printf( "got packet from %s\n", inet_ntoa( ClientAddr.sin_addr ) );
printf( "packet is %d bytes long\n", numbytes );
buf[ numbytes ] = '\0';
printf( "packet contains \"%s\"\n", buf );
closesocket( iServerSock );
WSACleanup( );
}
//客户端
#include< stdio.h >
#include< stdlib.h >
#include< windows.h >
#include< winsock.h >
#include< string.h >
#pragma comment( lib, "ws2_.lib" )
#define PORT
#define MAXDATASIZE
void main( void )
{
int iClientSock;
struct sockaddr_in ServerAddr;
int numbytes;
char buf[ MAXDATASIZE ] = { 0 };
WSADATA WSAData;
if( WSAStartup( MAKEWORD( 1, 1 ), &WSAData ) )
{
printf( "initializationing error!\n" );
WSACleanup( );
exit( 0 );
}
if( ( iClientSock = socket( AF_INET, SOCK_DGRAM, 0 ) ) == -1 )
{
printf( "创建套接字失败!\n" );
WSACleanup( );
exit( 0 );
}
ServerAddr.sin_family = AF_INET;
ServerAddr.sin_port = htons( PORT );
ServerAddr.sin_addr.s_addr = inet_addr( "..2." );//记得换IP
memset( &( ServerAddr.sin_zero ), 0, sizeof( ServerAddr.sin_zero ) );
numbytes = sendto( iClientSock, buf, strlen( buf ), 0, ( struct sockaddr * ) & ServerAddr, sizeof( struct sockaddr ) );
if( numbytes == -1 )
{
printf( "sendto调用失败!\n" );
WSACleanup( );
exit( 0 );
}
printf( "sent %d bytes to %s\n", numbytes, inet_ntoa( ServerAddr.sin_addr ) );
closesocket( iClientSock );
WSACleanup( );
}
TCP之深入浅出send&recv
接触过网络开发的人,了解上层应用如何使用send函数发送数据以及recv接收数据。但是,send和recv的实现原理是什么?本文将简单介绍TCP中发送缓冲区和接收缓冲区的作用,并讲解Linux系统下TCP发送和接收数据的具体实现。
缓冲区在数据传输中起着临时缓存的作用。发送端将数据拷贝到发送缓冲区后,立即返回应用层执行其他操作,ctf平台源码开发而接收端则将网络中的数据拷贝到缓冲区等待应用层读取。
发送缓冲区在应用层调用send()发送数据时,数据会被拷贝到socket的内核发送缓冲区。send()函数在应用层返回时,并不一定意味着数据已经发送到对端,而是数据已放入socket的内核发送缓冲区。
Linux内核提供两种方式查看tcp缓冲区大小:通过/etc/sysctl.ronf下的net.ipv4.tcp_wmem值或命令'cat /proc/sys/net/ipv4/tcp_wmem'。以笔者服务器为例,发送缓冲区大小为、、。
通过程序可以修改当前tcp socket的发送缓冲区大小,只影响特定的socket。
接收缓冲区用于缓存网络上来的数据,直至应用进程读取为止。当应用进程未读取数据且接收缓冲区已满时,收端会通知发端接收窗口关闭(win=0),实现TCP的流量控制。
接收缓冲区大小可以通过查看/etc/sysctl.ronf下的net.ipv4.tcp_rmem值或命令'cat /proc/sys/net/ipv4/tcp_rmem'获取。同样,可以通过修改程序大小修改接收缓冲区,仅影响当前特定socket。
TCP的四层模型包括应用层、传输层、网络层和数据链路层。应用层创建socket并建立连接后,可以调用send函数发送数据。传输层处理数据,以TCP为例,其主要功能包括流量控制、拥塞控制等。
当发送数据时,数据会从应用层、传输层、网络层、数据链路层依次传递。上图为send函数源码调用逻辑图,若对源码感兴趣,可查阅net/tcp.c获取详细实现。
recv函数实现类似,从数据链路层接收数据帧,通过网卡驱动处理后,进入内核进行协议层处理,最终将数据放入socket的接收缓冲区。
在实际应用中,非阻塞send时,发送端可能发送了大量数据,但实际只发送了部分,缓冲区中仍有大量数据未发送。接收端recv获取数据时,可能只收到部分数据。这种情况下,应用层需要正确处理超时、断开连接等情况。
总结来说,TCP的send和recv函数分别在应用层和传输层实现数据的发送和接收,通过内核的缓冲区控制数据的流动。正确理解这些原理对于网络编程至关重要。
Netty源码-一分钟掌握4种tcp粘包解决方案
TCP报文的传输过程涉及内核中recv缓冲区和send缓冲区。发送端,数据先至send缓冲区,经Nagle算法判断是否立即发送。接收端,数据先入recv缓冲区,再由内核拷贝至用户空间。
粘包现象源于无明确边界。解决此问题的关键在于界定报文的分界。Netty提供了四种方案来应对TCP粘包问题。
Netty粘包解决方案基于容器存储报文,待所有报文收集后进行拆包处理。容器与拆包处理分别在ByteToMessageDecoder类的cumulation与decode抽象方法中实现。
FixedLengthFrameDecoder是通过设置固定长度参数来识别报文,非报文长度,避免误判。
LineBasedFrameDecoder以换行符作为分界符,确保准确分割报文,避免将多个报文合并。
LengthFieldPrepender通过设置长度字段长度,实现简单编码,为后续解码提供依据。
LengthFieldBasedFrameDecoder则是一种万能解码器,能够解密任意格式的编码,灵活性高。
实现过程中涉及的参数包括:长度字段的起始位置offset、长度字段占的字节数lengthFieldLength、长度的调整lengthAdjustment以及解码后需跳过的字节数initialBytesToStrip。
在实际应用中,为自定义协议,需在服务器与客户端分别实现编码与解码逻辑。服务器端负责发送经过编码的协议数据,客户端则接收并解码,以还原协议信息。
TCP·IP架构、设计及应用目录
TCP/IP架构、设计及应用目录
第1章 引言概述TCP/IP协议栈
Linux 2.4.源码结构
协议栈与内核控制路径
Linux内核抢占性增强
进程与线程基础
内核同步机制
TCP/IP应用编程接口
shutdown与I/O操作
TCP状态分析
本章总结
第2章 协议基础TCP详解
TCP选项(RFC )
数据流与延迟确认
Nagle算法(RFC )
滑动窗口与吞吐量
定时器与拥塞控制
性能与可靠性
IP协议
路由与网络工具
本章总结
第章 ICD与调试IPCD功能
TCP/IP调试方法
未来展望
零基础5分钟开发一个简单的ModBus TCP主站上位机(附源码)
在工业控制和现场数据采集领域,Modbus协议因其广泛的应用而备受青睐。本文将指导你在Visual Studio 环境下,使用C#和Winform框架,从零开始,仅用5分钟,开发一个简单的Modbus TCP主站上位机。首先,你需要下载并安装Visual Studio社区版,确保选择".NET桌面开发"等必要组件。
安装完成后,新建一个Windows窗体应用项目,命名为"ModbusMaster"。接下来,安装Easy ModbusTcp库,它是基于.NET Framework的Modbus通信库,支持多种协议和编程语言,便于设备通信和数据采集。
在代码编写部分,你需要设计界面,然后引入EasyModbus库,编写关键功能如连接设备、读写Modbus报文的函数。例如,`btn_connect_Click`方法用于连接设备,`SlaveCoilWrite`方法则负责单个或多个输出寄存器的写入操作。通过点击按钮,你可以控制设备的布尔状态。