1.Redis 缓冲主从复制 - 源码梳理
2.java getResourceAsStream方法
3.I/O源码分析(3)--BufferedOutputStream之秒懂"flush"
4.node stream源码分析 — Readable
5.MediaCodec源码浅析
6.Redis源码解析:一条Redis命令是如何执行的?
Redis 主从复制 - 源码梳理
本文主要剖析Redis主从复制机制中的核心组件之一——复制积压缓冲区(Replication Buffer),旨在为读者提供一个对Redis复制流程和缓冲区机制深入理解的流源平台,以下内容仅基于Redis版本7.0.,码缓默若读者在使用过程中发现偏差,冲流欢迎指正。缓冲
复制积压缓冲区在逻辑上可理解为一个容量最大的流源vue后台项目源码下载位整数,其初始值为1,码缓默由offset、冲流master_repl_offset和repl_backlog-histlen三个变量共同决定缓冲区的缓冲有效范围。offset表示缓冲区内命令起始位置,流源master_repl_offset代表结束位置,码缓默二者之间的冲流长度由repl_backlog-histlen表示。
每当主节点执行写命令,缓冲新生成的流源积压缓冲区大小增加,同时增加master_repl_offset和repl_backlog-histlen的码缓默值,直至达到预设的最大容量(默认为1MB)。一旦所有从节点接收到命令并确认同步无误,缓冲区内过期的命令将被移除,并调整offset和histlen以维持积压区容量的稳定性。
为实现动态分配,复制积压缓冲区被分解成多个block,以链表形式组织。每个block采用引用计数管理策略,初始值为0,每当增加或删除从节点对block的引用时,计数值相应增减。新生成block时,将master_repl_offset+1设置为block的搜狐网站源码repl_offset值,并将写入命令拷贝至缓冲区内,与此同时,master_repl_offset和repl_backlog-histlen增加。
通过循环遍历所有从节点,为每个从节点设置ref_repl_buf_node指向当前block或最后一个block,确保主从复制能够准确传递命令。当主节点接收到从节点的连接请求时,将开始填充积压缓冲区。在全量复制阶段,从slave-replstate为WAIT_BGSAVE_START至ONLINE,表示redis从后台进程开始执行到完成RDB文件传输和加载,命令传播至此阶段正式开始。
针对每个从节点,主节点从slave-ref_block_pos开始发送积压缓冲区内的命令,每发送成功,slave-ref_block_pos相应更新。当积压缓冲区超过预设阈值,即复制积压缓冲区中的有效长度超过repl-backlog-size(默认1MB)时,主节点将清除已发送的缓冲区,释放内存。如果主节点写入命令频繁或从节点断线重连时间长,则需合理调整缓冲区大小(推荐值为2 * second * write_size_per_second)以保持增量复制的稳定运行。
当最后一个从节点与主节点的连接断开超过repl-backlog-ttl(默认为秒)时,主节点将释放repl_backlog和复制积压缓冲区以确保资源的有效使用。不过需要注意的是,从节点的释放操作依赖于节点是否可能成为新的主节点,因此在最后处理逻辑上需保持谨慎。qq空间权限源码破解
java getResourceAsStream方法
J2SE中的getResourceAsStream用法有以下几种:
第一: 要加载的文件和.class文件在同一目录下,例如:com.x.y 下有类me.class ,同时有资源文件myfile.xml
那么,应该有如下代码:
me.class.getResourceAsStream("myfile.xml");
第二:在me.class目录的子目录下,例如:com.x.y 下有类me.class ,同时在 com.x.y.file 目录下有资源文件myfile.xml
那么,应该有如下代码:
me.class.getResourceAsStream("file/myfile.xml");
第三:不在me.class目录下,也不在子目录下,例如:com.x.y 下有类me.class ,同时在 com.x.file 目录下有资源文件myfile.xml
那么,应该有如下代码:
me.class.getResourceAsStream("/com/x/file/myfile.xml");
总结一下,可能只是两种写法
第一:前面有 “ / ”
“ / ”代表了工程的根目录,例如工程名叫做myproject,“ / ”代表了myproject
me.class.getResourceAsStream("/com/x/file/myfile.xml");
第二:前面没有 “ / ”
代表当前类的目录
me.class.getResourceAsStream("myfile.xml");
me.class.getResourceAsStream("file/myfile.xml");
注:
getResourceAsStream读取的文件路径只局限与工程的源文件夹中,包括在工程src根目录下,以及类包里面任何位置,但是如果配置文件路径是在除了源文件夹之外的其他文件夹中时,该方法是用不了的。
I/O源码分析(3)--BufferedOutputStream之秒懂"flush"
本文基于JDK1.8,深入剖析了BufferedOutputStream的源码,帮助理解缓冲输出流的工作机制。
BufferedOutputStream,作为与缓冲输入流相对应的面向字节的IO类,其主要功能是通过write方法进行字节写出操作,并在调用flush方法时清除缓存区中的剩余字节。
其继承体系主要包括了基本的输出流类,如OutputStream。
相较于缓冲输入流,BufferedOutputStream的方法相对较少,但功能同样强大。web选课系统源码免费
BufferedOutputStream内部包含两个核心成员变量:buf代表缓冲区,count记录缓冲区中可写出的字节数。
构造函数默认初始化缓冲区大小为8M,若指定大小则按指定大小初始化。
BufferedOutputStream提供了两种主要的写方法:write(int b)用于写出单个字节,以及write(byte[] b, int off, int len)用于从数组中写出指定长度的字节。在内部实现中,使用System.arraycopy函数加速字节的复制过程。
对于上述方法在调用之后,均会进行缓冲区的清空操作,即调用内部的flushBuffer()方法。然而,用户直接调用的公有flush()方法有何意义呢?
在实际应用中,当使用BufferedOutputStream进行高效输出时,用户可能需要在程序结束前调用flush()方法,以确保所有未输出的字节都能被正确处理。避免了在程序未结束时输出流的缓存区中出现未输出的字节。
flush()方法内部逻辑简单,主要通过调用继承自FilterOutputStream的out变量的flush()方法实现缓存区的清空,并将缓冲区的字节全部输出。同时,由于Java的IO流采用装饰器模式,该过程也包括了调用其他实现缓冲功能类的flush方法。
为验证flush()方法的功能,本文进行了简单的测试,通过初始化缓冲区大小为5个字节,分别测试了不调用flush()、应急指挥系统 源码调用close()与不调用flush()、不调用close()的情况。
测试结果显示,不调用flush()而调用close()时,输出为一个特殊符号,表明字节被正确输出。而在不调用flush()且不调用close()的情况下,输出为空,说明有字节丢失。
值得注意的是,如果在测试时定义的字节数组长度超过缓冲区大小,BufferedOutputStream可能直接使用加速机制全部写出,无需调用flush()。
综上所述,使用BufferedOutputStream时,养成在程序结束前调用flush()的习惯,能有效避免因缓存区未清空导致的数据丢失问题,确保程序的稳定性和可靠性。
node stream源码分析 — Readable
Stream在Node.js中是一种数据传输的抽象机制,它分为四种类型:流、可读流(Readable)、可写流(Writable)和可缓冲流(Transform)。其中,可读流(Readable)用于从外部数据源读取数据。
可读流有两种模式:流动模式和非流动模式。非流动模式在监听到'data'事件时,直接读取数据而不暂停,并不将数据存储到缓存区。流动模式则在监听到'readable'事件时,将数据放入缓存区,并等待'writable'调用来判断是否有空位,以此来决定是否暂停。
以下是对可读流(Readable)的源码分析。首先,让我们查看Readable的源码。源码文件位于'_stream_readable.js'中。
在'fs.js'文件中,我们可以看到创建读取流的源码,而'Readable'则位于'_stream_readable.js'文件中。
在'fs.js'文件中,我们可以通过调用`fs.createReadStream`来创建读取流。在'Readable'源码文件中,我们可以看到Node.js实现的可读流类,它提供了读取数据的功能,并且支持缓冲和流式读取。
MediaCodec源码浅析
本文从MediaCodec源码的主要结构出发,深入分析了其核心函数dequeueOutputBuffer的实现机制。MediaCodec主要结构包括API、JNI、Native三个部分,这些部分共同构成了客户进程中运行的代码基础。在这些结构中,应用代码通过Java层MediaCodec接口与JNI代码交互,进而调用Native代码,实现解码器的主要逻辑。
结构上,MediaCodec源码主要分为以下几个关键组件:JMediaCodec、MediaCodec、ACodec和OMXClient。JMediaCodec作为与Java层交互的桥梁,包含智能指针sp和MediaCodec实例mCodec,以及用于事件循环的mLooper。MediaCodec则负责将ACodec与OMX服务端连接起来,实现解码功能。ACodec内部实现为状态机,并继承CodecBase功能,其构造函数初始化内部状态类,并设置初始状态为UninitializedState。OMXClient则负责维护与binder的连接,访问binder方法,实现与服务端的交互。
在分析过程中,重点关注了dequeueOutputBuffer函数的调用流程。该函数从MediaCodec.java调用native_dequeueOutputBuffer,在android_media_MediaCodec.cpp中映射到android_media_MediaCodec_dequeueOutputBuffer函数。最终,此函数通过JMediaCodec.dequeueOutputBuffer调用MediaCodec::dequeueOutputBuffer。在这一过程中,JMediaCodec.dequeueOutputBuffer构建kWhatDequeueOutputBuffer消息,通过ALooper传递给自己处理。消息处理后,将结果返回给调用者,完成输出缓冲区的获取。
在处理过程中,使用了消息队列来管理输入输出缓冲区。消息队列中包含两个关键组件:mPortBuffers和mAvailPortBuffers。mPortBuffers用于存储解码器的所有缓冲区,而mAvailPortBuffers则作为缓冲区队列,用于管理当前可用的缓冲区。dequeuePortBuffer函数用于从mAvailPortBuffers中获取可用缓冲区的索引。生产过程则通过updateBuffers更新缓冲区状态,清理过程则在returnBuffersToCodecOnPort中进行,清空了mAvailPortBuffers。
综上所述,MediaCodec源码的核心在于其结构设计和dequeueOutputBuffer函数的实现,通过消息队列管理和缓冲区操作,实现了高效的解码流程。
Redis源码解析:一条Redis命令是如何执行的?
作者:robinhzhang Redis,一个开源内存数据库,凭借其高效能和广泛应用,如缓存、消息队列和会话存储,本文将带你探索其命令执行的底层流程。本文将以源码解析的形式,逐层深入Redis的核心结构和命令执行过程,旨在帮助开发者理解实现细节,提升编程技术和设计意识。源码结构概览
在学习Redis源代码之前,首先要了解其主要的组成部分:redisServer、redisClient、redisDb、redisObject以及aeEventLoop。这些结构体和事件模型构成了Redis的核心架构。redisServer:服务端运行的核心结构,包括监听socket、数据存储的redisDb列表和客户端连接信息。
redisClient:客户端连接状态的存储,包括命令处理缓冲区、回复数据列表和数据库句柄。
redisDb:键值对的数据存储,采用两个哈希表实现渐进式rehash。
redisObject:存储对象的通用表示,包含引用计数和LRU时间,用于内存管理。
aeEventLoop:事件循环,管理文件和时间事件的处理。
核心流程详解
Redis的执行流程从main函数开始,首先初始化配置和服务器组件,进入主循环处理事件。命令执行流程涉及redis启动、客户端连接、接收命令和返回结果四个步骤:启动阶段:创建socket服务器,注册可读事件,进入主循环。
连接阶段:客户端连接后,接收并处理命令,创建客户端实例。
命令阶段:客户端发送命令,服务端解析并调用对应的命令处理函数。
结果阶段:处理命令后,根据协议格式构建回复并写回客户端。
渐进式rehash与内存管理
Redis的内存管理采用引用计数法,通过对象的refcount字段控制内存分配和释放。rehash操作在Redis 2.x版本引入,通过逐步迁移键值对,降低对单线程性能的影响。当负载达到阈值,会进行扩容,这涉及新表的创建和键值对的迁移。总结
本文通过Redis源码分析,揭示了其命令执行的细节,包括启动流程、客户端连接、命令处理和结果返回,以及内存管理策略。这将有助于开发者深入理解Redis的工作原理,提升编程效率和设计决策能力。2025-01-01 11:54
2025-01-01 11:47
2025-01-01 11:30
2025-01-01 11:06
2025-01-01 09:52
2025-01-01 09:46