皮皮网

【交友语音app源码】【airtest项目ios源码】【网址封包网源码】hdfs源码结构

2025-01-01 10:57:38 来源:素材源码 帝国

1.Alluxio 客户端源码分析
2.单机模式与伪分布模式有什么区别?
3.HDFS和Burst都是源码基于POC共识机制,有什么区别?

hdfs源码结构

Alluxio 客户端源码分析

       Alluxio是结构一个用于云分析和人工智能的开源数据编排技术,作为分布式文件系统,源码采用与HDFS相似的结构主从架构。系统中包含一个或多个Master节点存储集群元数据信息,源码以及Worker节点管理缓存的结构交友语音app源码数据块。本文将深入分析Alluxio客户端的源码实现。

       创建客户端逻辑在类alluxio.client.file.FileSystem中,结构简单示例代码如下。源码

       客户端初始化包括调用FileSystem.Context.create创建客户端对象的结构上下文,在此过程中需要初始化客户端以创建与Master和Worker连接的源码连接池。若启用了配置alluxio.user.metrics.collection.enabled,结构将启动后台守护线程定时与Master节点进行心跳传输监控指标信息。源码同时,结构客户端初始化时还会创建负责重新初始化的源码后台线程,定期从Master拉取配置文件的哈希值,若Master节点配置发生变化,则重新初始化客户端,期间阻塞所有请求直到重新初始化完成。airtest项目ios源码

       创建具有缓存功能的客户端在客户端初始化后,调用FileSystem.Factory.create进行客户端创建。客户端实现分为BaseFileSystem、MetadataCachingBaseFileSystem和LocalCacheFileSystem三种,其中MetadataCachingBaseFileSystem和LocalCacheFileSystem对BaseFileSystem进行封装,提供元数据和数据缓存功能。BaseFileSystem的调用主要分为三大类:纯元数据操作、读取文件操作和写入文件操作。针对元数据操作,直接调用对应GRPC接口(例如listStatus)。接下来,将介绍客户端如何与Master节点进行通信以及读取和写入的流程。

       客户端需要先通过MasterInquireClient接口获取主节点地址,当前有三种实现:PollingMasterInquireClient、SingleMasterInquireClient和ZkMasterInquireClient。其中,PollingMasterInquireClient是针对嵌入式日志模式下选择主节点的实现类,SingleMasterInquireClient用于选择单节点Master节点,网址封包网源码ZkMasterInquireClient用于Zookeeper模式下的主节点选择。因为Alluxio中只有主节点启动GRPC服务,其他节点连接客户端会断开,PollingMasterInquireClient会依次轮询所有主节点,直到找到可以连接的节点。之后,客户端记录该主节点,如果无法连接主节点,则重新调用PollingMasterInquireClient过程以连接新的主节点。

       数据读取流程始于BaseFileSystem.openFile函数,首先通过getStatus向Master节点获取文件元数据,然后检查文件是否为目录或未写入完成等条件,若出现异常则抛出异常。寻找合适的Worker节点根据getStatus获取的文件信息中包含所有块的信息,通过偏移量计算当前所需读取的块编号,并寻找最接近客户端并持有该块的Worker节点,从该节点读取数据。判断最接近客户端的打包苹果源码podfileWorker逻辑位于BlockLocationUtils.nearest,考虑使用domain socket进行短路读取时的Worker节点地址一致性。根据配置项alluxio.worker.data.server.domain.socket.address,判断每个Worker使用的domain socket路径是否一致。如果没有使用域名socket信息寻找到最近的Worker节点,则根据配置项alluxio.user.ufs.block.read.location.policy选择一个Worker节点进行读取。若客户端和数据块在同一节点上,则通过短路读取直接从本地文件系统读取数据,否则通过与Worker节点建立GRPC通信读取文件。

       如果无法通过短路读取数据,客户端会回退到使用GRPC连接与选中的Worker节点通信。首先判断是否可以通过domain socket连接Worker节点,优先选择使用domain socket方式。创建基于GRPC的块输入流代码位于BlockInStream.createGrpcBlockInStream。通过GRPC进行连接时,每次读取一个chunk大小并缓存chunk,减少RPC调用次数提高性能,chunk大小由配置alluxio.user.network.reader.chunk.size.bytes决定。

       读取数据块完成后或出现异常终止,怎么导出git源码Worker节点会自动释放针对该块的写入锁。读取异常处理策略是记录失败的Worker节点,尝试从其他Worker节点读取,直到达到重试次数上限或没有可用的Worker节点。

       若无法通过本地Worker节点读取数据,则客户端尝试发起异步缓存请求。若启用了配置alluxio.user.file.passive.cache.enabled且存在本地Worker节点,则向本地Worker节点发起异步缓存请求,否则向负责读取该块数据的Worker节点发起请求。

       数据写入流程首先向Master节点发送CreateFile请求,Master验证请求合法性并返回新文件的基本信息。根据不同的写入类型,进行不同操作。如果是THROUGH或CACHE_THROUGH等需要直接写入底层文件系统的写入类型,则选择一个Worker节点处理写入到UFS的数据。对于MUST_CACHE、CACHE_THROUGH、ASYNC_THROUGH等需要缓存数据到Worker节点上的写入类型,则打开另一个流负责将每个写入的块缓存到不同的Worker上。写入worker缓存块流程类似于读取流程,若写入的Worker与客户端在同一个主机上,则使用短路写直接将块数据写入Worker本地,无需通过网络发送到Worker上。数据完成写入后,客户端向Master节点发送completeFile请求,表示文件已写入完成。

       写入失败时,取消当前流以及所有使用过的输出流,删除所有缓存的块和底层存储中的数据,与读取流程不同,写入失败后不进行重试。

       零拷贝实现用于优化写入和读取流程中WriteRequest和ReadResponse消息体积大的问题,通过配置alluxio.user.streaming.zerocopy.enabled开启零拷贝特性。Alluxio通过实现了GRPC的MethodDescriptor.Marshaller和Drainable接口来实现GRPC零拷贝特性。MethodDescriptor.Marshaller负责对消息序列化和反序列化的抽象,用于自定义消息序列化和反序列化行为。Drainable扩展java.io.InputStream,提供将所有内容转移到OutputStream的方法,避免数据拷贝,优化内容直接写入OutputStream的过程。

       总结,阅读客户端代码有助于了解Alluxio体系结构,明白读取和写入数据时的数据流向。深入理解Alluxio客户端实现对于后续阅读其他Alluxio代码非常有帮助。

单机模式与伪分布模式有什么区别?

       1、运行模式不同:

       单机模式是Hadoop的默认模式。这种模式在一台单机上运行,没有分布式文件系统,而是直接读写本地操作系统的文件系统。

       伪分布模式这种模式也是在一台单机上运行,但用不同的Java进程模仿分布式运行中的各类结点。

       2、配置不同:

       单机模式(standalone)首次解压Hadoop的源码包时,Hadoop无法了解硬件安装环境,便保守地选择了最小配置。在这种默认模式下所有3个XML文件均为空。当配置文件为空时,Hadoop会完全运行在本地。

       伪分布模式在“单节点集群”上运行Hadoop,其中所有的守护进程都运行在同一台机器上。

       3、节点交互不同:

       单机模式因为不需要与其他节点交互,单机模式就不使用HDFS,也不加载任何Hadoop的守护进程。该模式主要用于开发调试MapReduce程序的应用逻辑。

       伪分布模式在单机模式之上增加了代码调试功能,允许你检查内存使用情况,HDFS输入输出,以及其他的守护进程交互。

扩展资料:

       核心架构:

       1、HDFS:

       HDFS对外部客户机而言,HDFS就像一个传统的分级文件系统。可以创建、删除、移动或重命名文件,等等。存储在 HDFS 中的文件被分成块,然后将这些块复制到多个计算机中(DataNode)。这与传统的 RAID 架构大不相同。块的大小和复制的块数量在创建文件时由客户机决定。

       2、NameNode

       NameNode 是一个通常在 HDFS 实例中的单独机器上运行的软件。它负责管理文件系统名称空间和控制外部客户机的访问。NameNode 决定是否将文件映射到 DataNode 上的复制块上。

       3、DataNode

       DataNode 也是在 HDFS实例中的单独机器上运行的软件。Hadoop 集群包含一个 NameNode 和大量 DataNode。DataNode 通常以机架的形式组织,机架通过一个交换机将所有系统连接起来。Hadoop 的一个假设是:机架内部节点之间的传输速度快于机架间节点的传输速度。

       百度百科-Hadoop

HDFS和Burst都是基于POC共识机制,有什么区别?

       据我了解,POC(容量证明)共识机制是Burst团队在年研发的,其共识优势是设备成本低、利用空闲资源,实现了人人皆可锻造的可能性。Burst将项目源代码进行共享。虽然由于经济模型和奖机制的问题,Burst项目并没有获得传统意义上的成功,但其源代码的分享为后来者提供许多启发。

       而HDFS则是基于Burst开发的POC共识机制,对POC进行了优化和升级,弥补了POC存在的一些不足之处。至于详细优化了哪些,你可以去看看HDFS的白皮书。