欢迎来到【罗盘指标源码详解】【有源码怎么制作】【竞猜体育app源码】eworker源码-皮皮网网站!!!

皮皮网

【罗盘指标源码详解】【有源码怎么制作】【竞猜体育app源码】eworker源码-皮皮网 扫描左侧二维码访问本站手机端

【罗盘指标源码详解】【有源码怎么制作】【竞猜体育app源码】eworker源码

2025-01-01 10:21:17 来源:{typename type="name"/} 分类:{typename type="name"/}

1.eworkerԴ??
2.图解+源码讲解 Nacos 客户端动态监听配置机制
3.ForkjoinPool -1

eworker源码

eworkerԴ??

       文件处理一直都是前端人的心头病,如何控制好文件大小,文件太大上传不了,文件下载时间太长,tcp直接给断开了?等

效果

       为了方便大家有意义的学习,这里就先放效果图,罗盘指标源码详解如果不满足直接返回就行,不浪费大家的时间。

文件上传

       文件上传实现,分片上传,暂停上传,恢复上传,文件合并等

文件下载

       为了方便测试,我上传了1个1g的大文件拿来下载,前端用的是流的方式来保存文件的,具体的可以看这个apiTransformStream

正文

       本项目的地址是:/post/

       requestIdleCallback有不明白的可以看这里:/post/

       接下来咋们来计算文件的hash,计算文件的hash需要使用spark-md5这个库,

全量计算文件hashexportasyncfunctioncalcHashSync(file:File){ //对文件进行分片,每一块文件都是分为2MB,这里可以自己来控制constsize=2**;letchunks:any[]=[];letcur=0;while(cur<file.size){ chunks.push({ file:file.slice(cur,有源码怎么制作cur+size)});cur+=size;}//可以拿到当前计算到第几块文件的进度lethashProgress=0returnnewPromise(resolve=>{ constspark=newSparkMD5.ArrayBuffer();letcount=0;constloadNext=(index:number)=>{ constreader=newFileReader();reader.readAsArrayBuffer(chunks[index].file);reader.onload=e=>{ //累加器不能依赖index,count++;//增量计算md5spark.append(e.target?.resultasArrayBuffer);if(count===chunks.length){ //通知主线程,计算结束hashProgress=;resolve({ hashValue:spark.end(),progress:hashProgress});}else{ //每个区块计算结束,通知进度即可hashProgress+=/chunks.length//计算下一个loadNext(count);}};};//启动loadNext(0);});}

       全量计算文件hash,在文件小的时候计算是很快的,但是在文件大的情况下,计算文件的hash就会非常慢,并且影响主进程哦?

抽样计算文件hash

       抽样就是取文件的一部分来继续,原理如下:

/***抽样计算hash值大概是1G文件花费1S的时间**采用抽样hash的方式来计算hash*我们在计算hash的时候,将超大文件以2M进行分割获得到另一个chunks数组,竞猜体育app源码*第一个元素(chunks[0])和最后一个元素(chunks[-1])我们全要了*其他的元素(chunks[1,2,3,4....])我们再次进行一个分割,这个时候的分割是一个超小的大小比如2kb,我们取*每一个元素的头部,尾部,中间的2kb。*最终将它们组成一个新的文件,我们全量计算这个新的文件的hash值。*@paramfile{ File}*@returns*/exportasyncfunctioncalcHashSample(file:File){ returnnewPromise(resolve=>{ constspark=newSparkMD5.ArrayBuffer();constreader=newFileReader();//文件大小constsize=file.size;letoffset=2**;letchunks=[file.slice(0,offset)];//前面2mb的数据letcur=offset;while(cur<size){ //最后一块全部加进来if(cur+offset>=size){ chunks.push(file.slice(cur,cur+offset));}else{ //中间的前中后去两个字节constmid=cur+offset/2;constend=cur+offset;chunks.push(file.slice(cur,cur+2));chunks.push(file.slice(mid,mid+2));chunks.push(file.slice(end-2,end));}//前取两个字节cur+=offset;}//拼接reader.readAsArrayBuffer(newBlob(chunks));//最后Kreader.onload=e=>{ spark.append(e.target?.resultasArrayBuffer);resolve({ hashValue:spark.end(),progress:});};});}

       这个设计是不是发现挺灵活的,真是API接口商城源码个人才哇

       在这两个的基础上,咋们还可以分别使用web-worker和requestIdleCallback来实现,源代码在hereヾ(≧▽≦*)o

       这里把我电脑配置说一下,公司给我分的电脑配置比较lower,8g内存的老机器。计算(3.3g文件的)hash的结果如下:

       结果很显然,全量无论怎么弄,都是比抽样的更慢。

文件分片的方式

       这里可能大家会说,文件分片方式不就是等分吗,其实还可以根据网速上传的同花顺画线段源码速度来实时调整分片的大小哦!

consthandleUpload1=async(file:File)=>{ if(!file)return;constfileSize=file.sizeletoffset=2**letcur=0letcount=0//每一刻的大小需要保存起来,方便后台合并constchunksSize=[0,2**]constobj=awaitcalcHashSample(file)as{ hashValue:string};fileHash.value=obj.hashValue;//todo判断文件是否存在存在则不需要上传,也就是秒传while(cur<fileSize){ constchunk=file.slice(cur,cur+offset)cur+=offsetconstchunkName=fileHash.value+"-"+count;constform=newFormData();form.append("chunk",chunk);form.append("hash",chunkName);form.append("filename",file.name);form.append("fileHash",fileHash.value);form.append("size",chunk.size.toString());letstart=newDate().getTime()//todo上传单个碎片constnow=newDate().getTime()consttime=((now-start)/).toFixed(4)letrate=Number(time)///速率有最大和最小可以考虑更平滑的过滤比如1/tanif(rate<0.5)rate=0.5if(rate>2)rate=2offset=parseInt((offset/rate).toString())chunksSize.push(offset)count++}//todo可以发送合并操作了} ATTENTION!!!?如果是这样上传的文件碎片,如果中途断开是无法续传的(每一刻的网速都是不一样的),除非每一次上传都把chunksSize(分片的数组)保存起来哦

控制/post/

图解+源码讲解 Nacos 客户端动态监听配置机制

       图解+源码讲解 Nacos 客户端动态监听配置机制

       在人生中第一要紧的是发现自己。为了这个目的,各位时常需要孤独和深思 —— 南森 Nacos 源码分析系列相关文章

       从零开始看 Nacos 源码环境搭建

       图解+源码讲解 Nacos 客户端发起注册流程

       图解+源码讲解 Nacos 服务端处理注册请求逻辑

       图解+源码讲解 Nacos 客户端下线流程

       图解+源码讲解 Nacos 服务端处理下线请求

       图解+源码讲解 Nacos 客户端发起心跳请求

       图解+源码讲解 Nacos 服务端处理心跳请求

       图解+源码讲解 Nacos 服务端处理配置获取请求

       图解+源码讲解 Nacos 客户端动态监听配置机制

NacosConfigAutoConfiguration

       我们看到这里面其实注入了一个 Nacos 配置刷新的关键 NacosContextRefresherBean

@Configuration@ConditionalOnProperty(name?=?"spring.cloud.nacos.config.enabled",?matchIfMissing?=?true)public?class?NacosConfigAutoConfiguration?{ //?Nacos?配置属性@Beanpublic?NacosConfigProperties?nacosConfigProperties(ApplicationContext?context)?{ if?(context.getParent()?!=?null&&?BeanFactoryUtils.beanNamesForTypeIncludingAncestors(context.getParent(),?NacosConfigProperties.class).length?>?0)?{ return?BeanFactoryUtils.beanOfTypeIncludingAncestors(context.getParent(),NacosConfigProperties.class);}return?new?NacosConfigProperties();}//?Nacos?配置刷新属性@Beanpublic?NacosRefreshProperties?nacosRefreshProperties()?{ return?new?NacosRefreshProperties();}//?Nacos?刷新历史@Beanpublic?NacosRefreshHistory?nacosRefreshHistory()?{ return?new?NacosRefreshHistory();}//?Nacos?配置管理@Beanpublic?NacosConfigManager?nacosConfigManager(NacosConfigProperties?nacosConfigProperties)?{ return?new?NacosConfigManager(nacosConfigProperties);}//?Nacos?配置刷新@Beanpublic?NacosContextRefresher?nacosContextRefresher(NacosConfigManager?nacosConfigManager,NacosRefreshHistory?nacosRefreshHistory)?{ return?new?NacosContextRefresher(nacosConfigManager,?nacosRefreshHistory);}}NacosContextRefresher 配置中心刷新public?NacosContextRefresher(NacosConfigManager?nacosConfigManager,NacosRefreshHistory?refreshHistory)?{ //?获取配置属性信息this.nacosConfigProperties?=?nacosConfigManager.getNacosConfigProperties();//?刷新历史this.nacosRefreshHistory?=?refreshHistory;//?获取配置服务this.configService?=?nacosConfigManager.getConfigService();//?是否开启刷新,是truethis.isRefreshEnabled?=?this.nacosConfigProperties.isRefreshEnabled();}获取配置服务 getConfigService

       nacosConfigManager.getConfigService(),这行代码其实就是为了创建 NcaosConfigService 对象,我们看看你是怎么创建的,其实核心代码就是通过 NacosFactory 反射创建的 NcaosConfigService 对象,这个对象是一个核心对象后续会讲到的

public?static?ConfigService?createConfigService(Properties?properties)?throws?NacosException?{ try?{ //?加载?NacosConfigService?类Class<?>?driverImplClass?=?Class.forName("com.alibaba.nacos.client.config.NacosConfigService");//?获取构造器Constructor?constructor?=?driverImplClass.getConstructor(Properties.class);//?创建实例ConfigService?vendorImpl?=?(ConfigService)?constructor.newInstance(properties);return?vendorImpl;}?catch?(Throwable?e)?{ throw?new?NacosException(NacosException.CLIENT_INVALID_PARAM,?e);}}监听器

       NacosContextRefresher 实现了 ApplicationListener ,一看这就是一个监听器了,我们看看这个在监听器里面做了什么操作

@Overridepublic?void?onApplicationEvent(ApplicationReadyEvent?event)?{ //?这是一个?CAS?操作,只设置一次if?(this.ready.compareAndSet(false,?true))?{ //?注册?Nacos?监听器对于应用this.registerNacosListenersForApplications();}}注册 Nacos 监听/**

       register Nacos Listeners. 注册Nacos监听器 */ private void registerNacosListenersForApplications() { // 默认是 true if (isRefreshEnabled()) { // 遍历Nacos属性资源中心 for (NacosPropertySource propertySource : NacosPropertySourceRepository .getAll()) { if (!propertySource.isRefreshable()) { continue; } // 获取资源ID ?String dataId = propertySource.getDataId(); // 通过组和 dataId 注册 Nacos 监听器 registerNacosListener(propertySource.getGroup(), dataId); } } }

       private void registerNacosListener(final String groupKey, final String dataKey) { // 构建 Key 信息 String key = NacosPropertySourceRepository.getMapKey(dataKey, groupKey); // 在 listenerMap中放入了 key 对应 AbstractSharedListener 响应的方法 Listener listener = listenerMap.computeIfAbsent(key, lst -> new AbstractSharedListener() { @Override public void innerReceive(String dataId, String group, String configInfo) { // 刷新次数 refreshCountIncrement(); // 记录刷新历史,就是改变历史 nacosRefreshHistory.addRefreshRecord(dataId, group, configInfo); // 发布刷新事件 applicationContext.publishEvent( new RefreshEvent(this, null, "Refresh Nacos config")); } }); // 向配置服务中添加监听器 configService.addListener(dataKey, groupKey, listener);

       }

####?向配置服务中添加监听器&nbsp;&nbsp;&nbsp;&nbsp;此时调用的是?NacosConfigService?中的?addListener?方法,但是最终执行的还是?ClientWorker?中的?addTenantListeners?方法,后面会进行分析?ClientWorker?这个类的```java@Overridepublic?void?addListener(String?dataId,?String?group,?Listener?listener)?throws?NacosException?{ //?这个?ClientWorker?worker?也是一个核心类worker.addTenantListeners(dataId,?group,?Arrays.asList(listener));}构建 CacheData 信息

       此时向 ClientWorker 中的 CacheData 中添加数据,之后遍历监听器添加到 CacheData 中

创建 CacheData 对象public?CacheData(ConfigFilterChainManager?configFilterChainManager,?String?name,?String?dataId,?String?group,String?tenant)?{ //?dataId?不能为空if?(null?==?dataId?||?null?==?group)?{ throw?new?IllegalArgumentException("dataId="?+?dataId?+?",?group="?+?group);}this.name?=?name;this.configFilterChainManager?=?configFilterChainManager;this.dataId?=?dataId;?//?设置dataIdthis.group?=?group;?//?设置组信息this.tenant?=?tenant;?//?设置租户listeners?=?new?CopyOnWriteArrayList<ManagerListenerWrap>();?//?装饰器集合this.isInitializing?=?true;//?加载缓存数据从本地磁盘this.content?=?loadCacheContentFromDiskLocal(name,?dataId,?group,?tenant);//?计算本地缓存信息的MD5this.md5?=?getMd5String(content);}向 CacheData 中添加数据public?void?addTenantListeners(String?dataId,?String?group,List<?extends?Listener>?listeners)throws?NacosException?{ //?DefaultGroupgroup?=?null2defaultGroup(group);String?tenant?=?agent.getTenant();?//?是?""//?向缓存数据中添加监听器CacheData?cache?=?addCacheDataIfAbsent(dataId,?group,?tenant);for?(Listener?listener?:?listeners)?{ cache.addListener(listener);}}public?CacheData?addCacheDataIfAbsent(String?dataId,?String?group,?String?tenant)throws?NacosException?{ //?获取Key信息String?key?=?GroupKey.getKeyTenant(dataId,?group,?tenant);//?在缓存?Map?中获取缓存数据CacheData?cacheData?=?cacheMap.get(key);//?如果不为空的情况下那么就返回,如果为空那么就创建一个?CacheDataif?(cacheData?!=?null)?{ return?cacheData;}//?创建一个?CacheData?cacheData?=?new?CacheData(configFilterChainManager,?agent.getName(),dataId,?group,?tenant);//?将创建好的?cacheData?放入缓存?Map?中CacheData?lastCacheData?=?cacheMap.putIfAbsent(key,?cacheData);//?如果缓存数据为空的话那么从配置中心拉取,不过此时不为空if?(lastCacheData?==?null)?{ //fix?issue?#?if?(enableRemoteSyncConfig)?{ String[]?ct?=?getServerConfig(dataId,?group,?tenant,?L);cacheData.setContent(ct[0]);}//?计算任务IDint?taskId?=?cacheMap.size()?/?(int)?ParamUtil.getPerTaskConfigSize();//?设置任务IDcacheData.setTaskId(taskId);lastCacheData?=?cacheData;}//?缓存数据初始化完成//?reset?so?that?server?not?hang?this?checklastCacheData.setInitializing(true);LOGGER.info("[{ }]?[subscribe]?{ }",?agent.getName(),?key);MetricsMonitor.getListenConfigCountMonitor().set(cacheMap.size());//?返回最新的缓存数据return?lastCacheData;}

       到这里 CacheData 对象 和 cacheMap 集合已经构建完成了,后续会用到这个数据的

NacosConfigService 分析

       NacosConfigService这个类在创建的时候主要做了什么事情,这这里面创建了一个 ClientWorker对象,这个对象是一个核心的类,有关于配置的一些操作都是归功于 ClientWorker类

public?NacosConfigService(Properties?properties)?throws?NacosException?{ ......this.agent?=?new?MetricsHttpAgent(new?ServerHttpAgent(properties));this.agent.start();//?核心工作类this.worker?=?new?ClientWorker(this.agent,this.configFilterChainManager,?properties);}核心配置类 ClientWorker

       分析一下这个类都在做什么事情,都有哪些核心方法 其实能看到里面有一个构造函数、添加缓存数据、添加监听器、检查配置中心相关方法、获取服务配置、解析数据响应、移除缓存数据、删除监听器以及 shutdown方法

构造函数

       看到这里其实看到了定义了两个调度线程池,一个是用于配置检测的,一个是用于执行长轮询服务的

@SuppressWarnings("PMD.ThreadPoolCreationRule")public?ClientWorker(final?HttpAgent?agent,final?ConfigFilterChainManager?configFilterChainManager,?final?Properties?properties){ this.agent?=?agent;this.configFilterChainManager?=?configFilterChainManager;//?初始化操作init(properties);//?定义一个调度线程池,只有一个线程还是守护线程this.executor?=?Executors.newScheduledThreadPool(1,?new?ThreadFactory()?{ @Overridepublic?Thread?newThread(Runnable?r)?{ Thread?t?=?new?Thread(r);t.setName("com.alibaba.nacos.client.Worker."?+?agent.getName());t.setDaemon(true);return?t;}});//?定义一个多个线程的调度线程池,线程个数和CPU?核心数有关,也是守护线程,是一个长轮询this.executorService?=?Executors.newScheduledThreadPool(Runtime.getRuntime().availableProcessors(),?new?ThreadFactory()?{ @Overridepublic?Thread?newThread(Runnable?r)?{ Thread?t?=?new?Thread(r);t.setName("com.alibaba.nacos.client.Worker.longPolling."?+agent.getName());t.setDaemon(true);return?t;}});//?定义一个定时的调度任务,第一次执行的时候延时1毫秒,后续毫秒调度一次this.executor.scheduleWithFixedDelay(new?Runnable()?{ @Overridepublic?void?run()?{ try?{ //?检查配置信息方法checkConfigInfo();}?catch?(Throwable?e)?{ LOGGER.error("["?+?agent.getName()?+?"]?"+?"[sub-check]?rotate?check?error",?e);}}},?1L,?L,?TimeUnit.MILLISECONDS);}检查配置服务方法

       这个 cacheMap 包含了一些任务信息,这里面的任务是怎么来的呢,他是在添加监听器的时候添加的,上面已经分析过了

public?NacosContextRefresher(NacosConfigManager?nacosConfigManager,NacosRefreshHistory?refreshHistory)?{ //?获取配置属性信息this.nacosConfigProperties?=?nacosConfigManager.getNacosConfigProperties();//?刷新历史this.nacosRefreshHistory?=?refreshHistory;//?获取配置服务this.configService?=?nacosConfigManager.getConfigService();//?是否开启刷新,是truethis.isRefreshEnabled?=?this.nacosConfigProperties.isRefreshEnabled();}0长轮询任务 LongPollingRunnable

ForkjoinPool -1

        ForkJoin是用于并行执行任务的框架, 是一个把大任务分割成若干个小任务,最终汇总每个小任务结果后得到大任务结果的框架。Fork就是把一个大任务切分为若干子任务并行的执行,Join就是合并这些子任务的执行结果,最后得到这个大任务的结果。

        下面是一个是一个简单的Join/Fork计算过程,将1—数字相加

        通常这样个模型,你们会想到什么?

        Release Framework ? 常见的处理模型是什么? task pool - worker pool的模型。 但是Forkjoinpool 采取了完全不同的模型。

        ForkJoinPool一种ExecutorService的实现,运行ForkJoinTask任务。ForkJoinPool区别于其它ExecutorService,主要是因为它采用了一种工作窃取(work-stealing)的机制。所有被ForkJoinPool管理的线程尝试窃取提交到池子里的任务来执行,执行中又可产生子任务提交到池子中。

        ForkJoinPool维护了一个WorkQueue的数组(数组长度是2的整数次方,自动增长)。每个workQueue都有任务队列(ForkJoinTask的数组),并且用base、top指向任务队列队尾和队头。work-stealing机制就是工作线程挨个扫描任务队列,如果队列不为空则取队尾的任务并执行。示意图如下

        流程图:

        pool属性

        workQueues是pool的属性,它是WorkQueue类型的数组。externalPush和externalSubmit所创建的workQueue没有owner(即不是worker),且会被放到workQueues的偶数位置;而createWorker创建的workQueue(即worker)有owner,且会被放到workQueues的奇数位置。

        WorkQueue的几个重要成员变量说明如下:

        这是WorkQueue的config,高位跟pool的config值保持一致,而低位则是workQueue在workQueues数组的位置。

        从workQueues属性的介绍中,我们知道,不是所有workQueue都有worker,没有worker的workQueue称为公共队列(shared queue),config的第位就是用来判断是否是公共队列的。在externalSubmit创建工作队列时,有:

        q.config = k | SHARED_QUEUE;

        其中q是新创建的workQueue,k就是q在workQueues数组中的位置,SHARED_QUEUE=1<<,注意这里config没有保留mode的信息。

        而在registerWorker中,则是这样给workQueue的config赋值的:

        w.config = i | mode;

        w是新创建的workQueue,i是其在workQueues数组中的位置,没有设置SHARED_QUEUE标记位

        scanState是workQueue的属性,是int类型的。scanState的低位可以用来定位当前worker处于workQueues数组的哪个位置。每个worker在被创建时会在其构造函数中调用pool的registerWorker,而registerWorker会给scanState赋一个初始值,这个值是奇数,因为worker是由createWorker创建,并会被放到WorkQueues的奇数位置,而createWorker创建worker时会调用registerWorker。

        简言之,worker的scanState初始值是奇数,非worker的scanstate初始值=INACTIVE=1<<,小于0(非worker的workQueue在externalSubmit中创建)。

        当每次调用signalWork(或tryRelease)唤醒worker时,worker的高位就会加1

        另外,scanState<0表示worker未激活,当worker调用runtask执行任务时,scanState会被置为偶数,即设置scanState的最右边一位为0。

        worker休眠时,是这样存储的

        worker的唤醒类似这样:

        在worker休眠的4行伪码中,让ctl的低位的值变为worker.scanState,这样下次就可以通过scanState唤醒该worker。唤醒该worker时,把该worker的preStack设置为ctl低位的值,这样下下次唤醒的worker就是scanState等于该preStack的worker。

        这里通过preStack保存下一个worker,这个worker比当前worker更早地在等待,所以形成一个后进先出的栈。

        runState是int类型的值,控制整个pool的运行状态和生命周期,有下面几个值(可以好几个值同时存在):

        如果runState值为0,表示pool尚未初始化。

        RSLOCK表示锁定pool,当添加worker和pool终止时,就要使用RSLOCK锁定整个pool。如果由于runState被锁定,导致其他操作等待runState解锁(通常用wait进行等待),当runState设置了RSIGNAL,表示runState解锁,并通知(notifyAll)等待的操作。

        剩下4个值都跟runState生命周期有关,都可以顾名思义:

        当需要停止时,设置runState的STOP值,表示准备关闭,这样其他操作看到这个标记位,就不会继续操作,比如tryAddWorker看到STOP就不会再创建worker:

        而tryTerminate对这些生命周期状态的处理则是这样的:

        当前top和base的初始值为 INITIAL_QUEUE_CAPACITY >>>1= (1 << )>>>1 = /2。然后push一个task之后,top+=1,也就是说,top对应的位置是没有task的,最近push进来的task在top-1的位置。而base的位置则能对应到task,base对应最先放进队列的task,top-1对应最后放进队列的task。

        qlock值含义:1: locked, < 0: terminate; else 0

        即当qlock值位0时,可以正常操作,值=1时,表示锁定

        int SQMASK=0xe,则任何整数跟SQMASK位与后,得到的数就是偶数。

        证明:

        注意这里化为二进制是 ,尤其注意最右边第一位是0,任何数跟最右边第一位是0的数位与后,得到的数就是偶数,因为位与之后,第一位就是0,比如s=A&SQMASK,A可以是任意整数,然后把s按二进制进行多项式展开,则有s=2 n1+2 n2 ……+2^nn,这里n≥1,所以s可以被2整除,即s是偶数。

        所以一个数是奇数还是偶数,看其最右边第一位即可。

        我们知道workQueue有externalPush创建的和createWorker创建的worker,两种方式创建的workQueue,其放置到workQueues的位置是不同的,前者放到workQueue的偶数位置,而后者则放到奇数位置。不同workQueue找到自己在workQueues的位置的算法有点不同。

        下面看一下forkjoin框架获取workQueues中的偶数位置的workQueue的算法:

        这样就能获取workQueues的偶数位置的workQueue。m保证m & r & SQMASK这整个运算结果不会超出workQueues的下标,SQMASK保证取到的是偶数位置的workQueue。这里有一个有趣的现象,假设0到workQueues.length-1之间有n个偶数,m & r & SQMASK每次都能取到其中一个偶数,而且连续n次取到的偶数不会出现重复值,散列性非常好。而且是循环的,即1到n次取n个不同偶数,n+1到2n也是取n次不同偶数,此时n个偶数每个都被重新取一次。下面分析下r值有什么秘密,为何能保证这样的散列性

        ThreadLocalRandom内有一常量PROBE_INCREMENT = 0x9eb9,以及一个静态的probeGenerator =new AtomicInteger() ,然后每个线程的probe= probeGenerator.addAndGet(PROBE_INCREMENT)所以第一个线程的probe值是0x9eb9,第二个线程的值就是0x9eb9+0x9eb9,第三个线程的值就是0x9eb9+0x9eb9+0x9eb9以此类推,整个值是线性的,可以用y=kx表示,其中k=0x9eb9,x表示第几个线程。这样每个线程的probe可以保证不一样,而且具有很好的离散性。

        实际上,可以不用0x9eb9这个值,用任意一个奇数都是可以的,比如1。如果用1的话,probe+=1,这样每个线程的probe就都是不同的,而且具有很好的离散性。也就是说,假设有限制条件probe<n,超过n则产生溢出。则probe自加n次后才会开始出现重复值,n次前probe每次自加的值都不同。实际上用任意一个奇数,都可以保证probe自加n次后才会开始出现重复值,有兴趣可看本文最后附录部分。由于奇数的离散性,所以只要线程数小于m或者SQMASK两者中的最小值,则每个线程都能唯一地占据一个ws中的一个位置

        当一个操作是在非ForkjoinThread的线程中进行的,则称该操作为外部操作。比如我们前面执行pool.invoke,invoke内又执行externalPush。由于invoke是在非ForkjoinThread线程中进行的(这里是在main线程中进行),所以是一个外部操作,调用的是externalPush。之后task的执行是通过ForkJoinThread来执行的,所以task中的fork就是内部操作,调用的是push,把任务提交到工作队列。其实fork的实现是类似下面这样的:

        即fork会根据执行自身的线程是否是ForkJoinThread的实例来判断是处于外部还是内部。那为何要区分内外部?

        任何线程都可以使用ForkJoin框架,但是对于非ForkJoinThread的线程,它到底是怎样的,ForkJoin无法控制,也无法对其优化。因此区分出内外部,这样方便ForkJoin框架对任务的执行进行控制和优化

        forkJoinPool.invoke(task)是把任务放入工作队列,并等待任务执行。源码如下

        这里externalPush负责任务提交,externalPush源码如下: