1.一篇讲解CPU性能指标提取及源码分析
2.浅说gocron:基于cron二次开发的工程工程定时任务集中调度平台
3.ä»»å¡è°åº¦å¹³å°XXL-JOB使ç¨
4.技术人生阅读源码——Quartz源码分析之任务的调度和执行
5.阿里巴巴分布式调度引擎tbschedule实战二源码环境搭建
6.《深入理解react》之调度引擎——Scheduler
一篇讲解CPU性能指标提取及源码分析
这篇报告主要根据CPU性能指标——运行队列长度、调度延迟和平均负载,调度调度对系统的源码源码性能影响进行简单分析。
CPU调度程序运行队列中存放的工程工程是那些已经准备好运行、正等待可用CPU的调度调度轻量级进程。如果准备运行的源码源码在线diy相册 源码轻量级进程数超过系统所能处理的上限,运行队列就会很长,工程工程运行队列长表明系统负载可能已经饱和。调度调度
代码源于参考资料1中map.c用于获取运行队列长度的源码源码部分代码。
在系统压力测试前后,工程工程使用压力测试工具stress-ng,调度调度可以看到运行队列长度的源码源码明显变化,从3左右变化到了左右。工程工程
压力测试工具stress-ng可以用来进行压力测试,调度调度观察系统在压力下的源码源码表现,例如运行队列长度、调度延迟、平均负载等性能指标。
在系统运行队列长度超过虚拟处理器个数的1倍时,需要关注系统性能。当运行队列长度达到虚拟处理器个数的3~4倍或更高时,系统的响应就会非常迟缓。
解决CPU调用程序运行队列过长的方法主要有两个方面:优化调度算法和增加系统资源。
所谓调度延迟,是指一个任务具备运行的条件(进入 CPU 的 runqueue),到真正执行(获得 CPU 的执行权)的这段时间。通常使用runqlat工具进行测量。
在正常情况下使用runqlat工具,可以查看调度延迟分布情况。压力测试后,调度延迟从最大延迟微秒变化到了微秒,可以明显的看到调度延迟的变化。
平均负载是对CPU负载的评估,其值越高,说明其任务队列越长,处于等待执行的任务越多。在系统压力测试前后,通过查看top命令可以看到1分钟、5分钟、分钟的辽宁燕窝溯源码load average分别从0.、1.、1.变化到了4.、3.、1.。
总结:当系统运行队列长度、调度延迟和平均负载达到一定值时,需要关注系统性能并进行优化。运行队列长度、调度延迟和平均负载是衡量系统性能的重要指标,通过监控和分析这些指标,可以及时发现和解决问题,提高系统的稳定性和响应速度。
浅说gocron:基于cron二次开发的定时任务集中调度平台
gocron项目基于cron进行二次开发,旨在提供一个定时任务集中调度平台。核心代码位于service/task.go文件中。此项目在实习期间被应用于二次开发,但由于gocron相关资料稀缺,本文旨在概述作者对cron和gocron代码的理解,并自行绘制流程图。
首先,了解cron表达式,它由六部分组成:秒、分、时、日、月、周,具体细节请参考相关资料。
gocron框架由cron架构衍生而来,由于网络资源有限,作者制作了流程图来辅助理解。
阅读源码的起点是gocron对cron的封装,使用cron实现定时任务。在service/task.go中,声明了*cron.Cron类型的serviceCron,初始化时实例化cron对象,从数据库获取任务并添加到定时任务列表中,同时调用task.Add()封装cron中的AddFunc。
深入研究gocron的生日农历提醒源码核心代码,cron使用的是robfig/cron库,而非官方文档中提及的版本。源码阅读可以从cron.go开始,重点关注run()方法,该方法使用select多路复用实现任务执行流程。
任务执行步骤涉及监听定时器触发、运行过程中的添加作业、快照、停止信号以及移除作业的信号。cron在run()中运行时,通过内部for循环嵌套监听上述五种信号,按照任务下次执行时间排序,每次监听到信号,执行相应的任务并更新状态。
与gocron类似,jakecoffman/cron项目也采用类似流程,但触发信号有所不同,同时将原有延时任务独立为延迟队列项目。
gocron提供了shell和pletion code`更新trigger。job执行环境包含job对象、trigger对象、触发时间、上一次触发时间与下一次触发时间等数据。Quartz通过线程池提供多线程服务,使用`SimpleThreadPool`实例化`WorkerThread`来执行job任务,最终调用`Job`的`execute`方法实现业务逻辑。
综上所述,Quartz通过精心设计的线程调度与执行流程,确保了任务的高效与稳定执行,展示了其强大的任务管理能力。
阿里巴巴分布式调度引擎tbschedule实战二源码环境搭建
在深入探讨阿里巴巴分布式调度引擎tbschedule的实战操作和源码搭建之前,我们先来了解一下tbschedule的基本结构和功能。tbschedule主要由三个部分构成:Doc目录、tbschedule-core核心jar工程以及tbschedule-console web工程。其中,tbschedule-core是分布式调度引擎的核心,负责执行复杂的调度逻辑;tbschedule-console则是一个Web管理界面,用于监控调度数据、配置策略和任务。桢定位和源码
接下来,让我们一起步入源码环境搭建的实践。首先,访问github的tbschedule仓库,下载源码。同时,下载并运行test-tbschedule项目作为实战demo,该工程的代码已共享在qq讨论群中,以供深入学习和探讨。
源码环境搭建主要分为两个步骤:源码工程的搭建与zk数据中心的安装。第一步,准备所需的源码,包括tbschedule工程、test-tbschedule工程以及数据库脚本文件。第二步,将三个源码导入至Eclipse开发环境,并进行相应的配置,如设置maven、导入本地maven工程、配置测试以及安装zookeeper数据中 心等。
在源码导入Eclipse后,进行一系列配置工作以确保环境的正确运行。例如,对test-tbschedule项目的spring-mybatis.xml文件进行数据库配置修改,设置main类中的zkurl为自己的路径,并在scheduleConsole项目中添加tomcat插件。所有配置完成后,通过运行tomcat7:run命令启动scheduleConsole项目,访问指定地址验证环境搭建是否成功。
至此,tbschedule的源码环境搭建工作便已基本完成。对于深入理解tbschedule的工作原理以及实际应用,可以通过官方提供的文档和源码解析教程进行学习,例如访问java.com/kcdetail.htm获取更多详细信息。通过实践操作和理论学习的结合,相信您能够更好地掌握tbschedule的使用技巧。
《深入理解react》之调度引擎——Scheduler
深入理解react
在react 版本发布以来的近两年时间里,许多伙伴都体验到了并发模式带来的爽感,createRoot()的libusb源码怎么用使用让应用有了更流畅的体验。而这一切的核心,便是react执行流中的调度引擎——Scheduler。调度,这个概念在计算机行业中广泛存在,无论是操作系统、浏览器还是大型应用,都离不开调度任务的需求。Scheduler,作为独立的包,不仅可以在react中使用,更可以在任何其他库中发挥作用,其简洁的源码使深入理解react成为可能。
为何需要调度器?首先是为了解决卡顿问题。在js引擎和渲染绘制都在同一线程执行的情况下,如何保证帧的刷新频率不被CPU密集型任务阻塞?其次,react会生成具有优先级的任务,优先级高的任务可能在后面产生,调度器能确保优先级高的任务优先执行,以提升用户体验。
Scheduler通过暴露的方法如unstable_scheduleCallback,可以按照优先级的高低顺序调度任务,并保证异步执行。在实际体验中,我们可以创建工程来测试Scheduler的执行时机,发现它会遵循优先级顺序,优先执行高优先级任务,并在下一个宏任务中异步执行。
源码解析中,小根堆作为关键数据结构,用于维护优先级队列。Scheduler使用小根堆来管理任务,优先级最高的任务始终处于堆顶。优先级的动态调整确保了任务在调度过程中的灵活排序。例如,随着时间推移,新任务的优先级会逐渐提高,使得原有任务在下一个周期中优先执行。
Scheduler的核心逻辑在工作循环中体现,通过合理调度不同优先级的任务,既不阻碍UI绘制,又能高效执行任务。对于大任务,用户可以通过拆分策略,将其划分为多个小任务,以避免阻塞UI,实现流畅的用户体验。
最后,Scheduler在react中扮演着关键角色,通过合理的任务调度,确保应用流畅运行。深入理解Scheduler,将为深入理解react提供坚实的基础。关注专栏,获取更多react相关知识。
SpringBoot 整合 Quartz 实现分布式调度
本文主要分享内容如下: Quartz是Java领域最著名的开源任务调度工具。在上篇文章中,我们详细介绍了Quartz在单体应用环境中的实践,尽管Spring Scheduled也能够实现任务调度,并且与SpringBoot无缝集成,支持注解配置,操作极其简便。然而,它在集群环境下存在一个缺点,即可能导致任务重复调度的问题。 相比之下,Quartz提供了丰富的特性,如任务持久化、集群部署以及分布式调度任务,因此在系统开发中应用广泛。在集群环境下,Quartz集群中的每个节点视为一个独立的Quartz应用,没有专门的集中管理节点。它们通过数据库表来感知彼此,利用数据库锁机制实现集群并发控制,确保每个任务当前运行的有效节点仅有一个。 特别需要注意的是,分布式部署时需保证各个节点的系统时间一致。接下来,我们通过具体应用实践来深入理解Quartz集群架构。 为了进行Quartz集群实践,我们需要先对数据表进行初始化。访问Quartz官网,下载对应的版本,如quartz-2.3.0-distribution.tar.gz,并解压。在文件中搜索SQL脚本,选择适合当前环境的数据库脚本文件,如mysql-5.7环境下的tables_mysql_innodb.sql脚本,完成数据库表的初始化。 数据库表结构如下: QRTZ_BLOG_TRIGGERS:Trigger作为Blob类型存储 QRTZ_CALENDARS:存储Quartz的Calendar信息 QRTZ_CRON_TRIGGERS:存储CronTrigger,包括Cron表达式和时区信息 QRTZ_FIRED_TRIGGERS:存储已触发的Trigger相关的状态信息及关联Job的执行信息 QRTZ_JOB_DETAILS:存储已配置的Job的详细信息 QRTZ_LOCKS:存储程序的悲观锁信息 QRTZ_PAUSED_TRIGGER_GRPS:存储已暂停的Trigger组信息 QRTZ_SCHEDULER_STATE:存储有关Scheduler状态的少量信息,与其他Scheduler实例 QRTZ_SIMPLE_TRIGGERS:存储简单的Trigger,包括重复次数、间隔、以及已触发的次数 QRTZ_SIMPROP_TRIGGERS:存储CalendarIntervalTrigger和DailyTimeIntervalTrigger两种类型的触发器 QRTZ_TRIGGERS:存储已配置的Trigger信息 其中,QRTZ_LOCKS是实现Quartz集群同步机制的行锁表。 实现Quartz集群实践的具体步骤如下: 创建SpringBoot项目,导入maven依赖包。 创建application.properties配置文件。 创建quartz.properties配置文件。 注册Quartz任务工厂。 注册调度工厂。 重新设置Quartz数据连接池,推荐使用Driud数据连接池。 编写Job具体任务类。 编写Quartz服务层接口。 编写Controller服务。 服务接口测试。 注册监听器(可选)。 采用项目数据源(可选)。 在实际部署中,项目通常会集群部署。为了确保与正式环境一致,我们可以通过新建多个相同的项目来测试Quartz在集群环境下的分布式调度功能。理论上,只需将新建的项目重新复制并修改端口号即可实现本地测试。 在测试集群环境下Quartz的分布式调度时,我们通常只需保持QuartzConfig、DruidConnectionProvider、QuartzJobFactory、TfCommandJob、quartz.properties类和配置相同。首先启动的服务(如quartz-)会优先加载数据库中配置的定时任务,而其他服务(如quartz-、quartz-)在没有主动调度的情况下,不会运行任务。 最终结果验证了预期效果:任何一个定时任务只有一台机器在运行,确保了分布式调度的正确性。 本文围绕SpringBoot + Quartz + MySQL实现持久化分布式调度进行了介绍。所有代码功能均由作者亲自测试验证,尽管内容较为详尽,但考虑到作者学识有限,如有遗漏或错误之处,欢迎读者批评指正。如有需要获取项目源代码,可通过相应方式获取。 参考资源:美团 - Quartz应用与集群原理分析
掘金 - 分布式定时任务框架Quartz
一文读懂,硬核 Apache DolphinScheduler3.0 源码解析
全网最全大数据面试提升手册!
一、DolphinScheduler设计与策略
了解DolphinScheduler,首先需要对调度系统有基础的了解,本文将重点介绍流程定义、流程实例、任务定义与任务实例。DolphinScheduler在设计上采用去中心化架构,集群中没有Master与Slave之分,提高系统的稳定性和可用性。
1.1 分布式设计
分布式系统设计分为中心化与去中心化两种模式,每种模式都有其优势与不足。中心化设计的集群中Master与Slave角色明确,Master负责任务分发与监控Slave健康状态,Slave执行任务。去中心化设计中,所有节点地位平等,无“管理者”角色,减少单点故障。
1.1.1 中心化设计
中心化设计包括Master与Slave角色,Master监控健康状态,均衡任务负载。但Master的单点故障可能导致集群崩溃,且任务调度可能集中于Master,产生过载。
1.1.2 去中心化设计
去中心化设计中,所有节点地位平等,通过Zookeeper等分布式协调服务实现容错与任务调度。这种设计降低了单点故障风险,但节点间通信增加了实现难度。
1.2 架构设计
DolphinScheduler采用去中心化架构,由UI、API、MasterServer、Zookeeper、WorkServer、Alert等组成。MasterServer与WorkServer均采用分布式设计,通过Zookeeper进行集群管理和容错。
1.3 容错问题
容错包括服务宕机容错与任务重试。Master容错依赖ZooKeeper,Worker容错由MasterScheduler监控“需要容错”状态的任务实例。任务失败重试需区分任务失败重试、流程失败恢复与重跑。
1.4 远程日志访问
Web(UI)与Worker节点可能不在同一台机器上,远程访问日志需要通过RPC实现,确保系统轻量化。
二、源码分析
2.1 工程模块介绍与配置文件
2.1.1 工程模块介绍
2.1.2 配置文件
配置文件包括dolphinscheduler-common、API、MasterServer与WorkerServer等。
2.2 API主要任务操作接口
API接口支持流程上线、定义、查询、修改、发布、下线、启动、停止、暂停、恢复与执行功能。
2.3 Quaterz架构与运行流程
Quartz架构用于调度任务,Scheduler启动后执行Job与Trigger。基本流程涉及任务初始化、调度与执行。
2.4 Master启动与执行流程
Master节点启动与执行流程涉及Quartz框架、槽(slot)与任务分发。容错代码由Master节点监控并处理。
2.5 Worker启动与执行流程
Worker节点执行流程包括注册、接收任务、执行与状态反馈。负载均衡策略由配置文件控制。
2.6 RPC交互
Master与Worker节点通过Netty实现RPC通信,Master负责任务分发与Worker状态监控,Worker接收任务与反馈执行状态。
2.7 负载均衡算法
DolphinScheduler提供多种负载均衡算法,包括加权随机、平滑轮询与线性负载,通过配置文件选择算法。
2.8 日志服务
日志服务通过RPC与Master节点通信,实现日志的远程访问与查询。
2.9 报警
报警功能基于规则筛选数据,并调用相应报警服务接口,如邮件、微信与短信通知。
本文提供了DolphinScheduler的核心设计与源码分析,涵盖了系统架构、容错机制、任务调度与日志管理等方面,希望对您的学习与应用有所帮助。