1.什么是源码STL
2.OpenHarmony 3GPP协议开发深度剖析——一文读懂RIL
3.Nacos 服务注册源码分析
什么是STL
它是由Alexander Stepanov、Meng Lee和David R Musser在惠普实验室工作时所开发 出来的剖析。现在虽说它主要出现在C++中,源码但在被引入C++之前该技术就已经存在了很长的剖析 一段时间。 STL的源码代码从广义上讲分为三类:algorithm(算法)、container(容器)和iterator( 迭代器),剖析弘历绝处逢生公式源码几乎所有的源码代码都采用了模板类和模版函数的方式,这相比于传统的剖析由函数 和类组成的库来说提供了更好的代码重用机会。在C++标准中,源码STL被组织为下面的剖析个 头文件:<algorithm>、<deque>、源码<functional>、剖析<iterator>、源码<vector>、剖析<list>、源码<m ap>、<memory>、<numeric>、<queue>、<set>、<stack>和<utility>。以下笔者就简单 介绍一下STL各个部分的主要特点。 二、算法 大家都能取得的一个共识是函数库对数据类型的选择对其可重用性起着至关重要的作用 。举例来说,一个求方根的函数,在使用浮点数作为其参数类型的情况下的可重用性肯 定比使用整型作为它的参数类性要高。而C++通过模板的steam盗号木马源码机制允许推迟对某些类型的选择 ,直到真正想使用模板或者说对模板进行特化的时候,STL就利用了这一点提供了相当多 的有用算法。它是在一个有效的框架中完成这些算法的——你可以将所有的类型划分为 少数的几类,然后就可以在模版的参数中使用一种类型替换掉同一种类中的其他类型。 STL提供了大约个实现算法的模版函数,比如算法for_each将为指定序列中的每一个 元素调用指定的函数,stable_sort以你所指定的规则对序列进行稳定性排序等等。这样 一来,只要我们熟悉了STL之后,许多代码可以被大大的化简,只需要通过调用一两个算 法模板,就可以完成所需要的功能并大大地提升效率。 算法部分主要由头文件<algorithm>,<numeric>和<functional>组成。<algorithm>是所 有STL头文件中最大的一个(尽管它很好理解),它是由一大堆模版函数组成的,可以认 为每个函数在很大程度上都是独立的,其中常用到的功能范围涉及到比较、交换、查找 、遍历操作、复制、修改、移除、反转、排序、合并等等。lol换肤的源码<numeric>体积很小,只包括 几个在序列上面进行简单数学运算的模板函数,包括加法和乘法在序列上的一些操作。 <functional>中则定义了一些模板类,用以声明函数对象。 三、容器 在实际的开发过程中,数据结构本身的重要性不会逊于操作于数据结构的算法的重要性 ,当程序中存在着对时间要求很高的部分时,数据结构的选择就显得更加重要。 经典的数据结构数量有限,但是我们常常重复着一些为了实现向量、链表等结构而编写 的代码,这些代码都十分相似,只是为了适应不同数据的变化而在细节上有所出入。ST L容器就为我们提供了这样的方便,它允许我们重复利用已有的实现构造自己的特定类型 下的数据结构,通过设置一些模版类,STL容器对最常用的数据结构提供了支持,这些模 板的参数允许我们指定容器中元素的数据类型,可以将我们许多重复而乏味的工作简化 。 容器部分主要由头文件<vector>,<list>,<deque>,<set>,<map>,<stack>和<queue>组成 。对于常用的一些容器和容器适配器(可以看作由其它容器实现的容器),可以通过下 表总结一下它们和相应头文件的对应关系。 数据结构 描述 实现头文件 向量(vector) 连续存储的元素 <vector> 列表(list) 由节点组成的双向链表,每个结点包含着一个元素 <list> 双队列(deque) 连续存储的指向不同元素的指针所组成的数组 <deque> 集合(set) 由节点组成的红黑树,每个节点都包含着一个元素,ddos攻击源码 c节点之间以某种作用于 元素对的谓词排列,没有两个不同的元素能够拥有相同的次序 <set> 多重集合(multiset) 允许存在两个次序相等的元素的集合 <set> 栈(stack) 后进先出的值的排列 <stack> 队列(queue) 先进先出的执的排列 <queue> 优先队列(priority_queue) 元素的次序是由作用于所存储的值对上的某种谓词决定的的 一种队列 <queue> 映射(map) 由{ 键,值}对组成的集合,以某种作用于键对上的谓词排列 <map> 多重映射(multimap) 允许键对有相等的次序的映射 <map> 四、迭代器 下面要说的迭代器从作用上来说是最基本的部分,可是理解起来比前两者都要费力一些 (至少笔者是这样)。软件设计有一个基本原则,所有的问题都可以通过引进一个间接 层来简化,这种简化在STL中就是用迭代器来完成的。概括来说,迭代器在STL中用来将 算法和容器联系起来,起着一种黏和剂的作用。几乎STL提供的所有算法都是通过迭代器 存取元素序列进行工作的,每一个容器都定义了其本身所专有的迭代器,用以存取容器 中的元素。 迭代器部分主要由头文件<utility>,<iterator>和<memory>组成。<utility>是一个很小 的头文件,它包括了贯穿使用在STL中的几个模板的声明,<iterator>中提供了迭代器使 用的许多方法,而对于<memory>的描述则十分的困难,它以不同寻常的方式为容器中的 元素分配存储空间,同时也为某些算法执行期间产生的临时对象提供机制,<memory>中的 主要部分是模板类allocator,它负责产生所有容器中的默认分配器。 五、对初学者学习STL的一点建议 对于之前不太了解STL的读者来说,上面的文字只是十分概括地描述了一下STL的框架, 对您理解STL的unity 4.3源码下载机制乃至使用STL所起到的帮助微乎甚微,这不光是因为深入STL需要对C ++的高级应用有比较全面的了解,更因为STL的三个部分算法、容器和迭代器三部分是互 相牵制或者说是紧密结合的。从概念上讲最基础的部分是迭代器,可是直接学习迭代器 会遇到许多抽象枯燥和繁琐的细节,然而不真正理解迭代器又是无法直接进入另两部分 的学习的(至少对剖析源码来说是这样)。可以说,适应STL处理问题的方法是需要花费 一定的时间的,但是以此为代价,STL取得了一种十分可贵的独立性,它通过迭代器能在 尽可能少地知道某种数据结构的情况下完成对这一结构的运算,所以下决心钻研STL的朋 友们千万不要被一时的困难击倒。其实STL运用的模式相对统一,只要适应了它,从一个 STL工具到另一个工具,都不会有什么大的变化。 对于STL的使用,也普遍存在着两种观点。第一种认为STL的最大作用在于充当经典的数 据结构和算法教材,因为它的源代码涉及了许多具体实现方面的问题。第二种则认为ST L的初衷乃是为了简化设计,避免重复劳动,提高编程效率,因此应该是“应用至上”的 ,对于源代码则不必深究。笔者则认为分析源代码和应用并不矛盾,通过分析源代码也 能提高我们对其应用的理解,当然根据具体的目的也可以有不同的侧重。
OpenHarmony 3GPP协议开发深度剖析——一文读懂RIL
市场上针对终端操作系统3GPP协议开发的相关资料较为稀缺,即便在Android领域,相关学习文档也较为有限,更不用说专门的协议开发书籍了。这可能与市场需求有关,目前市场上从事前后端软件开发的人员最多,包括我自己。
鉴于我在某手机协议开发团队工作过一段时间,对协议的AP侧和CP侧开发都有所涉猎,因此我尝试基于OpenAtom OpenHarmony(以下简称“OpenHarmony”)源码编写一些内容,旨在帮助大家了解协议开发领域,尽可能将3gpp协议内容与OpenHarmony电话子系统模块相结合进行讲解。据我所知,目前终端协议开发人才非常紧缺。首先声明,我不是协议专家,且已离开该领域五六年,如有错误,欢迎指正。
谈到终端协议开发,我首先想到的就是RIL。
CP:Communication Processor(通信处理器),通常理解为modem侧,也可以理解为底层协议,这部分由各个modem芯片厂商完成(如海思、高通)。
AP:Application Processor(应用处理器),通常指手机终端,通常理解为上层协议,主要由操作系统Telephony服务进行处理。
RIL:Radio Interface Layer(无线电接口层),通常理解为硬件抽象层,即AP侧将通信请求传给CP侧的中间层。
AT指令:AT指令是应用于终端设备与PC应用之间连接与通信的指令。
常规的Modem开发与调试可以使用AT指令进行操作,而各家的Modem芯片的AT指令都会有各自的差异。因此,手机终端厂商为了能在各种不同型号的产品中集成不同modem芯片,需要进行解耦设计来屏蔽各家AT指令的差异。
于是,OpenHarmony采用RIL对Modem进行HAL(硬件抽象),作为系统与Modem之间的通信桥梁,为AP侧提供控制Modem的接口,各Modem厂商则负责提供对应于AT命令的Vender RIL(这些一般为封装好的so库),从而实现操作系统与Modem间的解耦。
框架层:Telephony Service,电话子系统核心服务模块,主要功能是初始化RIL管理、SIM卡和搜网模块。对应OpenHarmony的源码仓库OpenHarmony/telephony_core_service。这个模块也是非常重要的一个模块,后期单独再做详细解读。
硬件抽象层:即我们要讲的RIL,对应OpenHarmony的源码仓库OpenHarmony/telephony_ril_adapter。RIL Adapter模块主要包括厂商库加载,业务接口实现以及事件调度管理。主要用于屏蔽不同modem厂商硬件差异,为上层提供统一的接口,通过注册HDF服务与上层接口通讯。
芯片层:Modem芯片相关代码,即CP侧,这些代码各个Modem厂商是不开放的,不出现在OpenHarmony中。
硬件抽象层又被划分为hril_hdf层、hril层和venderlib层。
hril_hdf层:HDF服务,基于OpenHarmony HDF框架,提供hril层与Telephony Service层进行通讯。
hril层:hril层的各个业务模块接口实现,比如通话、短彩信、数据业务等。
vendorlib层:各Modem厂商提供的对应于AT命令库,各个厂商可以出于代码闭源政策,在这里以so库形式提供。目前源码仓中已经提供了一套提供代码的AT命令操作,至于这个是针对哪个型号modem芯片的,我后续了解清楚再补充。
下面是ril_adapter仓的源码结构:
本文解读RIL层很小一部分代码,RIL是如何通过HDF与Telephony连接上的,以后更加完整的逻辑梳理会配上时序图讲解,会更加清晰。首先,我们要对OpenHarmony的HDF(Hardware Driver Foundation)驱动框架做一定了解,最好是动手写一个Demo案例,具体的可以单独去官网查阅HDF资料。
首先,找到hril_hdf.c文件的代码,它承担的是驱动业务部分,源码中是不带中文注释的,为了梳理清楚流程,我给源码关键部分加上了中文注释。
上述代码中配置了对应该驱动的moduleName为"hril_hdf",因此我们需要去找到对应驱动的配置文件,以HiDV开发板为例,它的驱动配置在vendor_hisilicon/HiDV/hdf_config/uhdf/device_info.hcs代码中可以找到,如下:
这里可以发现该驱动对应的服务名称为cellular_radio1,那么telephony_core_service通过HDF与RIL进行通信肯定会调用到该服务名称,因此无查找telephony_core_service的相关代码,可以很快定位到telephony_core_service/services/tel_ril/src/tel_ril_manager.cpp该代码,该代码中有一个关键类TelRilManager,它用来负责管理tel_ril。
看tel_ril_manager.cpp中的一个关键函数ConnectRilAdapterService,它就是用来通过HDF框架获取RIL_ADAPTER的服务,之前定义过RIL_ADAPTER_SERVICE_NAME常量为"cellular_radio1",它就是在vendor_hisilicon/XXXX/hdf_config/uhdf/device_info.hcs中配置的hril_hdf驱动对应的服务名称。
Nacos 服务注册源码分析
文章标题:Nacos 服务注册源码深度剖析
作者郑哥在微信公众号运维开发故事中,详细解析了Nacos服务注册过程中服务端和客户端的运作机制。以Spring-Boot为基础,Nacos在服务架构中扮演着中心角色,与Eureka、Zookeeper等其他中间件相区分,其特点是支持AP和CP模式,并采用Raft协议保证分区一致性。
客户端注册服务是主动的,通过Spring-Cloud Alibaba组件集成。关键配置类NacosServiceRegistryAutoConfiguration定义了核心Bean,如NacosAutoServiceRegistration,它负责将服务实例注册到Nacos。NacosServiceRegistry则负责实际的注册操作,通过心跳机制保持与服务端的连接。
服务端,Nacos根据客户端注册时的ephemeral属性决定使用Distro(AP)或Raft(CP)协议。AP模式下,Nacos通过udp更新服务实例信息,而CP模式下,会触发raftCore.signalPublish进行数据同步和通知。
对于源码调试,郑哥分享了如何定位启动类com.alibaba.nacos.Nacos,以及如何通过IDEA进行启动和调试。要深入了解Nacos的源码,可以参考nacos.io和github.com/alibaba/nacos...的文档。