欢迎来到皮皮网网首页

【restcloud源码】【跳转html源码模板】【C __file__ 源码】hbase项目源码_hbase源码分析

来源:期货唐奇安指标源码 时间:2025-01-04 07:31:39

1.LevelDB 源码剖析1 -- 原理
2.TiKV 源码解析系列文章(十四)Coprocessor 概览
3.hbase特性有哪些

hbase项目源码_hbase源码分析

LevelDB 源码剖析1 -- 原理

       LSM-Tree,目源码全称Log-Structured Merge Tree,源码被广泛应用于数据库系统中,分析如HBase、目源码Cassandra、源码LevelDB和SQLite,分析restcloud源码甚至MongoDB 3.0也引入了可选的目源码LSM-Tree引擎。这种数据结构旨在提供优于传统B+树或ISAM(Indexed Sequential Access Method)方法的源码写入吞吐量,通过避免随机的分析本地更新操作实现。

       LSM-Tree的目源码核心思想基于磁盘性能的特性:随机访问速度远低于顺序访问,三个数量级的源码差距。因此,分析简单地将数据附加至文件尾部(日志或堆文件策略)可以提供接近理论极限的目源码写入吞吐量。尽管这种方法足够简单且性能良好,源码但它有一个明显的分析缺点:从日志中随机读取数据需要花费更多时间,因为需要按时间顺序从近及远扫描日志直至找到所需键。跳转html源码模板因此,日志策略仅适用于简单的数据访问场景。

       为了应对更复杂的读取需求,如基于键的搜索、范围搜索等,LSM-Tree引入了一种改进策略,通过创建一系列排序文件来存储数据,每次写入都会生成一个新的文件,同时保留了日志系统优秀的写性能。在读取数据时,系统会检查所有文件,并定期合并文件以减少文件数量,从而提高读取性能。

       在LSM-Tree的基本算法中,写入数据按照顺序保存到一组较小的C __file__ 源码排序文件中。每个文件代表了一段时间内的数据变更,且在写入前进行排序。内存表作为写入数据的缓冲区,用于保持键值的顺序。当内存表填满后,已排序的数据刷新到磁盘上的新文件。系统会周期性地执行合并操作,选择一些文件进行合并,以减少文件数量和删除冗余数据,同时维持读取性能。

       读取数据时,系统首先检查内存缓冲区,若未找到目标键,则以反向时间顺序检查各个文件,直到找到目标键。Linux OpenGLes 源码编译合并操作通过定期将文件合并在一起,控制文件数量和读取性能,即使文件数量增加,读取性能仍可保持在可接受范围内。通过使用内存中保存的页索引,可以优化读取操作,尤其是在文件末尾保留索引块,这通常比直接二进制搜索更高效。

       为了减少读取操作时访问的文件数量,新实现采用了分级合并(Leveled Compaction),即基于级别的文件合并策略。这不仅减少了最坏情况下需要访问的文件数量,还减少了单次压缩的副作用,同时提供更好的读取性能。分级合并与基本合并的校园跑腿源码php主要区别在于文件合并的策略,这使得工作负载扩展合并的影响更高效,同时减少总空间需求。

TiKV 源码解析系列文章(十四)Coprocessor 概览

       本文将简要介绍 TiKV Coprocessor 的基本原理。TiKV Coprocessor 是 TiDB 的一部分,用于在 TiKV 层处理读请求。通过引入 Coprocessor,TiKV 可以在获取数据后进行计算,从而提高性能。

       传统处理方式中,TiDB 向 TiKV 获取数据,然后在 TiDB 内部进行计算。而 Coprocessor 则允许 TiKV 进行计算,将计算结果直接返回给 TiDB,减少数据在系统内部的传输。

       Coprocessor 的概念借鉴自 HBase,其主要功能是对读请求进行分类,处理包括 TableScan、IndexScan、Selection、Limit、TopN、Aggregation 等不同类型请求。其中,DAG 类请求是最复杂且常用的类型,本文将重点介绍。

       DAG 请求是由一系列算子组成的有向无环图,这些算子在代码中称为 Executors。DAG 请求目前支持两种计算模型:火山模型和向量化模型。在当前的 TiKV master 上,这两种模型并存,但火山模型已被弃用,因此本文将重点介绍向量化计算模型。

       向量化计算模型中,所有算子实现了 BatchExecutor 接口,其核心功能是 get_batch。算子类型包括 TableScan、IndexScan、Selection、Limit、TopN 和 Aggregation 等,它们之间可以任意组合。

       以查询语句“select count(1) from t where age>”为例,展示了如何使用不同算子进行处理。本文仅提供 Coprocessor 的概要介绍,后续将深入分析该模块的源码细节,并欢迎读者提出改进意见。

hbase特性有哪些

       HBase的特性包括以下几个方面:

高性能的数据写入

       HBase具有非常强的数据写入性能。其基于LSM树结构,数据被随机地分布在整个集群的多个节点上,这使得数据写入时能够并行处理,大大提高了写入性能。同时,HBase支持大量的并发写入操作,使得它在大数据环境下表现优异。

灵活的表结构设计

       HBase是一个非关系型的数据库,它的表结构非常灵活。每个表可以拥有多个列族,每个列族下的数据可以有不同的存储特性。这种灵活性使得HBase能够适应各种类型的数据存储需求,同时也方便了对数据的扩展和管理。

强大的可扩展性

       HBase是基于Hadoop的分布式文件系统HDFS构建的,具有天然的分布式特性。通过增加节点的方式,HBase可以很容易地扩展其存储能力和处理能力。这使得HBase能够在处理海量数据的同时保持高性能。

快速的数据检索

       虽然HBase是一个面向列的数据库,但它的查询性能同样出色。HBase支持高效的范围查询和基于列属性的查询,可以快速定位到特定的数据行。同时,由于数据的分布式存储和处理,即使在大量数据中查询,也能保持较高的效率。

高可用性

       HBase支持集群部署,数据可以在多个节点上进行备份和复制。即使部分节点出现故障,也能保证数据的可用性和系统的稳定运行。这种高可用性使得HBase在大数据处理中非常可靠。而且由于其开放源代码的特性,任何开发者都可以对HBase进行开发和优化,使其更加适应各种应用场景的需求。