1.C语言如何用OpenGL
2.opengl-01:源码编译
3.用Python和OpenGL探索数据可视化(三维篇)- 创建三维坐标轴类和立方体类
4.2 Qt+OpenGL环境搭建与基本理解
5.CMake搭建OpenGL开发环境
6.VTK&ITK在Windows上用CMake编译安装
C语言如何用OpenGL
OpenGL就是源码基于C语言的,只需要下载OpenGL的安装SDK库安装即可,在编写源码时:
1、源码添加头文件glut.h。安装
注意glut.h文件中已经包含gl.h,源码glu.h在实际编译中可以只加入头文件glut.h,很多相关的安装alipay源码例子都是这样的,但是源码在mingwstudio上编译发现,在glut.h前还是安装需要加入glu.h, gl.h.如:
#include <gl/gl.h>
#include <gl/glu.h>
#include <gl/glut.h>
2、在工程中添加OpenGL的源码库,有关命令行加入,安装glu opengl glut库就可以编译了。源码
opengl-:源码编译
1 源码编译 + cmake + vscode
系统环境:ubuntu ..6
编译环境: g++9.4 cmake3..3
编译工具:vscode
1.1 glfw源码编译
Release 3.3. · glfw/glfw 下载 glfw-3.3..zip
安装依赖
解压源码文件
cmake配置
编译工程 edgelee / vscode-opengl-tutorial -1-glfw
1.2 glad源码编译
glad.dav1d.de/ 选择配置内容(如图)
生成源文件 glad.zip
解压zip
cmake配置
一级CmakeList
二级CmakeList
编译工程 edgelee / vscode-opengl-tutorial -2-glad
1.3 imgui源码编译(依赖系统OpenGL)
imgui源码下载
github.com/ocornut/imgu...
ubuntu安装opengl
解压zip
cmake配置
一级CmakeList
二级CmakeList
根据makefile内容配置CmakeList(imgui-1..4/examples/example_glfw_opengl3/Makefile)
编译输出 edgelee / vscode-opengl-tutorial -3-imgui-(system-gl)
1.4 imgui源码编译(不依赖系统OpenGL)
imgui源码下载:同1.3
ubuntu安装opengl:不需要(即使安装,安装不使用)
解压zip:同1.3
cmake配置
一级CmakeList:同1.3
二级CmakeList:去掉OpenGL依赖
编译错误
根据错误提示,源码修正
imgui-1..4/backends/imgui_impl_glfw.cpp文件的安装添加
编译结果 edgelee / vscode-opengl-tutorial -3-imgui-(no-system-gl)
2 实例2.1 旋转三角形 glfw +glad
源码文件:glfw-3.3./examples/simple.c(不采用glfw自带glad,修改到自编译glad)
一级CmakeList
二级CmakeList
生成效果 edgelee / vscode-opengl-tutorial -sample-glfw-glad
2.2 gui界面 glfw +imgui
源码文件:imgui-1..4/examples/example_glfw_opengl3/main.cpp
一级CmakeList
二级CmakeList
生成效果 edgelee / vscode-opengl-tutorial -sample-glfw-imgui
2.3 gui界面 glfw +glda +imgui(建议方式)
注:建议采用此方式,源码openGL api 统一使用 gdal api
源码文件:imgui-1..4/examples/example_glfw_opengl3/main.cpp(修改到 gdal api)
一级CmakeList
二级CmakeList
生成效果 edgelee / vscode-opengl-tutorial -sample-glfw-glad-imgui
用Python和OpenGL探索数据可视化(三维篇)- 创建三维坐标轴类和立方体类
本系列文章讲解使用Python与OpenGL 4.5进行数据可视化开发,确保您的计算机支持OpenGL 4.5版本,建议阅读《准备工作(一)Windows下检测显卡和OpenGL信息》以确认兼容性。继续参阅《准备工作(二)配置Windows下VS Code + Python + OpenGL开发环境》以完成所需开发环境的设置。
上一节我们通过立方体学习了OpenGL的变换矩阵与模型矩阵。紧接着在《用Python和OpenGL探索数据可视化(三维篇)- 你好,坐标轴》一节中我们绘制了三维坐标轴。立方体与坐标轴是三维图形绘制中常见的元素,因此我们将在本节中通过代码重构将它们转化为专门类,以便后续的重复使用。
开始VS Code,使用File菜单下的“Open Folder”功能,打开D:\pydev\pygl并进入common文件夹,新建一个名为shaders的子文件夹。将basic文件夹下的shaders子文件夹中的axes.vs、axes.fs、cube.vs、cube.fs文件复制至common文件夹的shaders文件夹。
在common文件夹中新建axeshelper.py文件,主流开源社交源码并在其中输入相应代码。同样地,创建cube.py文件并输入对应代码。接着,在common文件夹中建立__init__.py文件,并在其中输入必要的代码。
在basic文件夹中新建一个名为cube_app_v1.py的文件,并在其中输入相应的代码。点击VS Code右上角的三角形图标以运行代码,此时会呈现预期的结果。
借助坐标轴的辅助,图形变换变得清晰且有趣。通过本系列文章中的源代码资源,您可以进一步探索和实践Python与OpenGL的数据可视化开发。
参考系列文章:1.《用Python和OpenGL探索数据可视化(基础篇)- 你好,窗口!》;2.《用Python和OpenGL探索数据可视化(基础篇)- 你好,OpenGL!》;3.《用Python和OpenGL探索数据可视化(基础篇)- 你好,ImGui!》;4.《用Python和OpenGL探索数据可视化(基础篇)- 你好,小不点!》;5.《用Python和OpenGL探索数据可视化(基础篇)- 重构代码“你好,小不点!”》;6.《用Python和OpenGL探索数据可视化(基础篇)- “你好,线段!”》;7.《用Python和OpenGL探索数据可视化(基础篇)- 重构代码组织OpenGL核心对象包pygl》;8.《用Python和OpenGL探索数据可视化(基础篇)- 你好,三角形!》;9.《用Python和OpenGL探索数据可视化(基础篇)- 改进OpenGL程序Program类》;.《用Python和OpenGL探索数据可视化(基础篇)- 你好,矩形!》;.《用Python和OpenGL探索数据可视化(基础篇)- 完善pygl增加索引缓存对象EBO》;.《用Python和OpenGL探索数据可视化(基础篇)- 你好,纹理!》;.《用Python和OpenGL探索数据可视化(基础篇)- 完善pygl增加OpenGL二维纹理对象》;.《用Python和OpenGL探索数据可视化(基础篇)- 细说纹理环绕》;.《用Python和OpenGL探索数据可视化(基础篇)- 细说纹理过滤》;.《用Python和OpenGL探索数据可视化(基础篇)- 处理键盘和鼠标事件》;.《用Python和OpenGL探索数据可视化(三维篇)- 你好,delphi bbs 源码下载坐标轴》;.《用Python和OpenGL探索数据可视化(三维篇)- 用立方体体验模型矩阵》。
2 Qt+OpenGL环境搭建与基本理解
前往Qt官网下载并安装Qt,选择包含Source选项以备查阅Qt源码。开始编写第一个Qt OpenGL程序,参考QOpenGL入门教程和Italink/QtOpenGL-Essential-Training中的经验总结。前置学习推荐LearnOpenGL CN。制作Hello World效果的OpenGL程序。若遇到找不到OpenGL相关头文件的问题,更新Qt版本至6,调整路径。使用CMake工程时,确保链接OpenGL包。顶点着色器找不到gl_Position变量的难题,通过在qmake工程中设置解决。对比glfw3.h提供的OpenGL接口与Qt自定义类继承QOpenGLFunctions或其子类QOpenGLExtraFunctions的封装,Qt的接口作为成员函数使用。Qt源码查看方法,首先在安装时选择Source选项或安装后使用Qt Maintenance Tool添加,配置定位器搜索到Qt源码路径并直接在主界面左下角搜索需要查看的源码文件。获取Qt中的OpenGL版本,通过C++方式实现。Qt对Shader的封装QOpenGLShaderProgram与OpenGL接口存在一定距离,推荐直接使用QOpenGLFunctions、QOpenGLExtraFunctions提供的接口进行Shader编程。下一节将移植LearnOpenGL中的Shader至Qt环境中。
CMake搭建OpenGL开发环境
在Ubuntu.环境中搭建OpenGL开发环境,主要采用GLFW和GLAD。
首先,编译GLFW,遵循GLFW官网提供的编译指南,利用CMake进行编译。
Ubuntu用户可以直接安装libglfw3-dev依赖。
确认所使用的小猪平台源码下载环境为X系统,并安装相应依赖。
访问GLAD官网,下载zip压缩包,解压后将include文件夹移动到/usr/local/include目录,并将glad.c文件放置在工程目录中。
创建测试工程,包含CMakeLists.txt文件和main.cpp。
欲深入了解OpenGL,可参考LearnOpenGL CN主页。
加入glm库,获取链接:github.com/g-truc/glm。
步骤如下:直接将glm源码下载到thirdparty目录;
修改CMakeLists.txt文件,加入相关配置。
调整顶点着色器,添加模型常量句柄,以便与shader program链接。
使用glm库旋转度,实现特定效果。
最终结果如下所示。
VTK&ITK在Windows上用CMake编译安装
在Windows操作系统上,使用CMake编译安装VTK和ITK,需要遵循以下步骤。
首先,安装支持OpenGL的VTK。习惯使用CMake的GUI版本,除非需要自动化工作流时才使用CMD。将VTK源码文件夹解压,并在build目录下创建install-RelWithDebInfo目录。
在CMake中设置源码文件夹和构建文件夹。点击Configure键进行初次设置,保持默认配置,点击Finish键。进度条完成后,js京东源码再次点击Configure键,可能出现红色选项,如果未出现错误,继续点击Configure键直到选项消失。
点击Generate键生成构建文件。此时,虽然Open Project键被激活,但不建议直接点击,建议以管理员身份使用Visual Studio打开build文件夹下的VTK.sln文件,然后在生成菜单下选择批生成,选择ALL_BUILD,勾选所需配置后生成。
ALL_BUILD生成过程可能耗时半小时左右。生成完成后,再次在生成菜单下选择批生成,取消ALL_BUILD的勾选。找到并勾选INSTALL,生成需要的配置,快速生成(约秒左右)。若生成过程显示“成功”,无失败信息,则基本无问题。
接下来,安装支持VTK的ITK。将ITK源码文件夹解压,并在build目录下创建install-RelWithDebInfo目录。在CMake中设置源码文件夹和构建文件夹。点击Configure键进行初次设置,保持默认配置,点击Finish键。进度条完成后,再次点击Configure键,可能会出现错误提示,不必担心,这是提醒需设置VTK相关内容。
在VTK安装路径下找到vtk-config.cmake文件(大致位于“/lib/cmake/vtk-9.3”下),将VTK_DIR设置为此路径。再次点击Configure键,可能再次出现红色选项,因为之前勾选了可选模块,现在出现了相关选项。再次点击Configure键,确保无红色选项。
点击Generate键生成构建文件。之后,按照VTK安装流程,使用管理员模式下的Visual Studio打开ITK.sln,使用批生成依次生成ALL_BUILD和INSTALL。
若在生成ALL_BUILD过程中出现几个失败,可能与可选模块有关。在生成日志中查找“error”信息,确定出现问题的模块,尝试解决(或在重新生成构建文件时,放弃勾选该出错模块)。
OpenCL安装过程记录
大创项目接近尾声,决定尝试学习和使用OpenCL进行开发。在搜索安装教程时,发现大多数资料针对的是CUDA Toolkit或直接提供文件复制方式,针对Linux系统的Khronos SDK教程则主要面向Windows用户。考虑到自己对编程基础的熟练程度,决定亲自完成安装过程并记录下来,以供后来者参考。
安装环境为Ubuntu . LTS(基于Linux 5.),使用GCC版本.3.0、CMake版本3..1。
首先,从Khronos官方获取OpenCL SDK源代码。理论上,可以使用Git进行克隆,但实际情况中遇到了GitHub网络不稳定的问题。建议在稳定网络环境下使用Git或通过第三方下载工具辅助下载源代码。同时,注意SDK将某些必需文件设置为子项目(如OpenCL-SDK/external/OpenCL-Headers),需要进入子项目手动下载。
在终端中切换到下载目录,并执行CMake。配置过程会自动检测并提示缺失的依赖项,尝试自动安装。在安装过程中,遇到了OpenGL、doxygen、X_X_LIB等依赖需要手动通过apt安装。
解决完依赖项后,理论上可进行编译。在终端中运行CMake并指定安装目录。编译完成后,OpenCL库被安装到电脑中。
接下来,配置可执行文件的依赖。在/etc/ld.so.conf.d目录下创建一个opencl.conf文件,写入安装目录下的动态库路径,如在/opt/OpenCL下,则动态库路径应为/opt/OpenCL/lib。使用Vim编辑器打开并保存文件。执行ldconfig命令以应用配置。
解决编译器问题。可以简单地将/opt/OpenCL/lib和/usr/include中的内容复制到相应目录,以避免手动指定链接库。更复杂的方法是修改gcc的specs文件,使编译器不再需要-lOpenCL选项。不过,这种方法较为繁琐,本文不作深入讨论。
通过符号链接解决编译器依赖问题。运行ln命令创建链接,使得编译器可以访问/usr/lib/CL/...,实际内容仍存储在/opt/OpenCL中。在编译时仍然需要添加-lOpenCL选项。
至此,OpenCL的安装配置已完成。尝试编写一段测试代码以验证环境是否正常工作。测试代码输出CL_DEVICE_EXTENSIONS中的内容,以了解设备的扩展支持情况,例如是否支持双精度浮点数(cl_khr_fp)。
总结代码示例及其编译选项,确保测试代码能够正确执行,验证OpenCL环境配置是否正确。至此,通过详细的步骤记录,为希望学习和使用OpenCL的开发者提供了清晰的安装和配置指南。
用Python和OpenGL探索数据可视化(基础篇)- 重构代码组织OpenGL核心对象包pygl
使用Python和OpenGL进行数据可视化的开发时,需要确保电脑支持OpenGL 4.5版本,可以通过检测显卡和OpenGL信息来确认。配置Windows下VS Code + Python + OpenGL开发环境的步骤也在文中有所提及。
在上一节中,我们深入学习了OpenGL的核心对象顶点数组对象(VAO)和顶点缓存对象(VBO)之间的绑定,以及如何使用OpenGL绘制“线”。然而,在对比point_app.py和line_app.py后,可以发现一些明显的重复代码,如创建“着色器”、“程序”、VAO、VBO的过程。为遵循DRY(Don't Repeat Yourself)原则,有必要重构代码。
首先,在"D:\pydev\pygl"目录下新建一个"pygl"子文件夹,并在其中创建"shader.py"文件。在该文件中,定义了一个OpenGL着色器类,构造函数包含着色器类型和源代码文件名参数。类中定义了创建和删除着色器对象的方法,以及加载、编译着色器源代码的逻辑。
接下来,在"pygl"文件夹下新建"program.py"文件,定义了OpenGL程序类,构造函数接收一个着色器对象列表作为参数。该类包含创建、使用、删除程序对象的方法,以及加载和链接着色器对象以形成最终程序的逻辑。
进一步,创建了从"program.py"派生的"ProgramVF"类,专门用于创建只使用顶点着色器和片段着色器的OpenGL程序类。构造函数接收顶点和片段着色器源代码文件名作为参数,并自动创建、链接着色器对象,最后删除不再使用的对象。
在"pygl"目录下,还创建了"vertexbufferobject.py"和"vertexarrayobject.py"文件,分别定义了顶点缓存对象(VBO)和顶点数组对象(VAO)类。这些类分别提供了创建、绑定、删除对象的方法,以及处理顶点数据和属性的逻辑。
在"__init__.py"文件中,通过导入这些类,将"pygl"目录组织成一个Python包,使得用户可以轻松导入和使用其中的类。
在"basic"文件夹中,新建"shaders"子文件夹,并在其中创建"line.vs"和"line.fs"文件,分别包含顶点和片段着色器代码。在"line_app_v1.py"文件中,导入重构后的"pygl"包,并使用新类创建OpenGL程序、顶点缓存和顶点数组对象,实现了"你好,线段!"功能,重构后代码精简明显,逻辑更清晰。
对比"line_app_v1.py"和原始代码"line_app.py",重构后的源代码减少了重复代码,提高了代码的可读性和可维护性。重构工作不仅简化了代码结构,还通过使用面向对象方法提高了代码的模块化程度,使得后续扩展和修改变得更加容易。
2025-01-01 10:24
2025-01-01 10:20
2025-01-01 10:06
2025-01-01 09:35
2025-01-01 09:34
2025-01-01 09:09
2025-01-01 08:01
2025-01-01 07:49