最不待见的经典量化策略R-breaker
R-Breaker策略,由Richard Saidenberg开发,源码自年发布后,趋势趋势连续十五年被《Futures Truth Magazine》评选为顶级赚钱策略之一。量化量化该策略的源码集合直播盒子源码独特之处在于结合了趋势追踪与反向操作,既能捕捉趋势带来的趋势趋势高额利润,又能精准地在趋势反转时止盈,量化量化实现顺势而为的源码反向操作。其广泛应用与研究,趋势趋势不仅限于国内,量化量化也扩展到了全球。源码
策略的趋势趋势核心在于六个关键价位的计算,根据前一个交易日的量化量化收盘价、最高价和最低价,源码计算出观察卖出价、观察买入价、反转卖出价、反转买入价、突破卖出价与突破买入价。通过追踪盘中价格走势,策略判断出合适的入场与离场时机。
具体操作如下:当盘中价格超过突破买入价时,在该点位开仓做多;若盘中价格低于突破卖出价时,则做空。在价格出现回落或反弹并分别跌破反转卖出价或超过反转买入价时,策略执行反向操作。此外,策略还设有过滤条件,以避免在市场波动过小的情况下单边交易,以及每日收盘前平仓的规则。
R-Breaker策略的源码,采用MC版本,详细描述了策略的实现逻辑,包括变量与输入参数的定义。策略的配音小程序网站源码执行逻辑围绕价格变动和特定条件触发,如价格突破关键价位、市场时间限制等,通过设置止损条件来控制风险。
尽管R-Breaker策略在策略设计上具有一定的创新与实用性,但也有专家对其逻辑与设计风格提出了质疑与改进意见。其中,有观点认为,趋势追踪是更合理的交易方式,而非单纯结合趋势与震荡策略。同时,策略对交易对象的单一性与参数数量较多的问题,增加了策略的过度拟合风险,这与CTA策略设计的禁忌不符。此外,策略在出场方式上相对简单,存在优化空间。
对于R-Breaker策略在沪深指数期货中的应用效果,具体案例与分析并未在文中详细展开,但通过对比历史数据与策略表现,可以得出其在特定市场环境下展现出的潜在优势与局限性。
常见的十大量化投资策略(附源码)
量化投资策略,通过量化方法在金融市场上分析、判断和交易的策略和算法的总称,主要有以下十种:
、海龟交易策略。这是一种全面的趋势跟随型自动化交易策略,详细设计了入场条件、仓位控制、资金管理与止损止盈,可作为复杂交易策略设计与开发的模板。
、阿尔法策略。基于传统基本面分析,通过在期指市场做空,在股票市场构建拟合指数的情绪人气指标源码组合,赚取价差,被动套利。
、多因子选股策略。通过找到与收益率相关的指标,构建股票组合,期望其在一段时间内跑赢或跑输指数,实现正向或反向阿尔法收益。
、双均线策略。通过建立移动平均线,依据均线交叉点进行交易,抓住股票的强势与弱势时刻。
、行业轮动策略。利用市场趋势获利,通过切换行业品种实现收益最大化。
、跨品种套利策略。利用不同相关联指数期货产品之间的价差进行交易,有助于扭曲市场价格回复正常水平,增强市场流动性。
、指数增强策略。旨在提供高于标的指数回报水平的投资业绩,力求保持标的指数的各种特征。
、网格交易策略。利用投资标的在震荡行情中的价格波动进行加仓减仓,捕捉价格震荡趋势以实现盈利。
、跨期套利策略。在同一交易所进行不同交割月份的套利活动,最常见于股指期货。
、gis开发源码分享高频交易策略。通过利用市场变化中极短的时间差获利,交易速度极快,服务器群组可能被安置在交易所附近以缩短交易时间。
文华财经软件指标公式赢顺云指标公式启航DK捕猎者智能量化系统指标源码
在技术分析领域,文华财经软件中的指标公式提供了多种量化分析工具,帮助投资者在交易决策中获取优势。以下是一个具体示例,展示了如何构建一个智能量化系统指标源码,以实现自动化交易策略。
这个指标源码首先通过MA(移动平均)函数计算不同周期的移动平均线,包括日、日、日、日和日的移动平均线。这些平均线被视为价格趋势的重要指示器,帮助交易者识别市场方向。MA5、MA、MA、MA、MA和MA分别代表了5日、日、日、日、日和日的简单移动平均线。
接着,通过RSV(相对强弱指数)计算公式,评估价格变动的相对强弱。RSV=(C-LLV(L,9))/(HHV(H,9)-LLV(L,9))*,其中C代表收盘价,L代表最低价,H代表最高价。RSV值的计算帮助交易者识别市场的超买或超卖状态。
进一步,http连接池源码通过SMA(简单移动平均)计算K、D和J值,形成KDJ指标,K=3*SMA(RSV,3,1);D=SMA(K,3,1);J=3*K-2*D。KDJ指标被广泛应用于判断市场趋势和拐点,为交易者提供买入或卖出信号。
最后,通过逻辑判断和条件计算,系统能够自动识别特定的交易信号。例如,当J值穿越一个预先设定的临界值(例如J<),同时满足X和Y的条件时(X=LLV(J,2)=LLV(J,8)且Y=IF(CROSS(J,REF(J+0.,1)) AND X AND J<,,0)),系统可能会触发一个买入或卖出信号,以指示交易者采取相应的行动。
通过这样的智能量化系统指标源码,文华财经软件能够为投资者提供高效、自动化的交易策略,帮助其在市场中获取竞争优势。这种自动化的交易策略不仅节省了人力成本,还能够减少主观判断的偏差,提高交易决策的准确性。
通达信量化擒龙先手!主附图/选股指标源码分享
通达信量化擒龙先手!主附图/选股指标源码分享
一. 指标简介:
二. 主图指标源码
MA5:MA(C,5);
MA:MA(C,);
MA:MA(C,);
MA:MA(C,);
DIF1:=EMA(CLOSE,)-EMA(CLOSE,);
DEA1:=EMA(DIF1,9);
AAA1:=(DIF1-DEA1)*2*;
AAA上:=IF(AAA1>REF(AAA1,1),AAA1,DRAWNULL);
AAA下:=IF(AAA1
买:=;
入:=AAA1-REF(AAA1,1);
正大:=CROSS(入,买);
DIF:=EMA(CLOSE,)-EMA(CLOSE,);
DEA:=EMA(DIF,);
AAA:=(DIF-DEA)*2*;
牛股:=CROSS(AAA-REF(AAA,1),);
正大牛股:=正大 AND 牛股;
HSL:=V/CAPITAL*>5;
S1:=IF(NAMELIKE('S'),0,1);
S2:=IF(NAMELIKE('*'),0,1);
Z3:=NOT(INBLOCK('近期解禁'));
Z4:=NOT(INBLOCK('拟减持'));
Z5:=NOT(INBLOCK('股东减持'));
Z6:=NOT(INBLOCK('基金减持'));
Z7:=NOT(INBLOCK('即将解禁'));
Z8:=IF(CODELIKE(''),0,1);
Z9:=IF(CODELIKE('8'),0,1);
去掉:=S1 AND S2 AND Z3 AND Z4 AND Z5 AND Z6 AND Z7 AND Z8 AND Z9;
AA:=MA(CLOSE,8);
BB:=((ATAN((AA - REF(AA,1))) * 3.) * );
均线:=MA(CLOSE,);
均线:=MA(CLOSE,);
均线:=MA(CLOSE,);
天马:=((((((OPEN <= 均线) AND ((均线 - REF(均线,1)) > 0))
AND (CLOSE > 均线)) AND (BB > 1)) AND ((CLOSE / OPEN) > 1.)));
{ 股价必涨}
AA:=IF(CLOSE/REF(CLOSE,1)>1. AND HIGH/CLOSE<1. AND IF(CLOSE>REF(CLOSE,1),,0)>0, , 0);
SS:=MA((LOW+HIGH+CLOSE)/3,5)>REF(MA((LOW+HIGH+CLOSE)/3,5),1) AND REF(MA((LOW+HIGH+CLOSE)/3,5),1)
SC:=LHHV(MA((LOW+HIGH+CLOSE)/3,5),) AND C>REF(C,1) AND C>O;
MR:=SC AND COUNT(SS,2);
BB:=MR AND NOT(REF(MR,1));
股价必涨:=AA OR BB OR 天马;
{ 抄底}
二十日换手率:=BETWEEN(SUM(HSCOL,),,);{ 意思是 日换手率介于---之间}
DFO:=(C-REF(C,1))/REF(C,1)*<-5;
AAO:=BARSLAST(DFO);
突破:=CROSS(C,REF(O,AAO));
抄底:=二十日换手率 AND 突破;
三.副图指标源码:
DIF1:=EMA(CLOSE,)-EMA(CLOSE,);
DEA1:=EMA(DIF1,9);
AAA1:=(DIF1-DEA1)*2*;
AAA上:=IF(AAA1>REF(AAA1,1),AAA1,DRAWNULL);
AAA下:=IF(AAA1
买:=;
入:=AAA1-REF(AAA1,1);
正大:=CROSS(入,买);
DIF:=EMA(CLOSE,)-EMA(CLOSE,);
DEA:=EMA(DIF,);
AAA:=(DIF-DEA)*2*;
牛股:=CROSS(AAA-REF(AAA,1),);
正大牛股:=正大 AND 牛股;
HSL:=V/CAPITAL*>5;
S1:=IF(NAMELIKE('S'),0,1);
S2:=IF(NAMELIKE('*'),0,1);
Z3:=NOT(INBLOCK('近期解禁'));
Z4:=NOT(INBLOCK('拟减持'));
Z5:=NOT(INBLOCK('股东减持'));
Z6:=NOT(INBLOCK('基金减持'));
Z7:=NOT(INBLOCK('即将解禁'));
Z8:=IF(CODELIKE(''),0,1);
Z9:=IF(CODELIKE('8'),0,1);
去掉:=S1 AND S2 AND Z3 AND Z4 AND Z5 AND Z6 AND Z7 AND Z8 AND Z9;
AA:=MA(CLOSE,8);
BB:=((ATAN((AA - REF(AA,1))) * 3.) * );
均线:=MA(CLOSE,);
均线:=MA(CLOSE,);
均线:=MA(CLOSE,);
天马:=((((((OPEN <= 均线) AND ((均线 - REF(均线,1)) > 0))
AND (CLOSE > 均线)) AND (BB > 1)) AND ((CLOSE / OPEN) > 1.)));
{ 股价必涨}
AA:=IF(CLOSE/REF(CLOSE,1)>1. AND HIGH/CLOSE<1. AND IF(CLOSE>REF(CLOSE,1),,0)>0, , 0);
SS:=MA((LOW+HIGH+CLOSE)/3,5)>REF(MA((LOW+HIGH+CLOSE)/3,5),1) AND REF(MA((LOW+HIGH+CLOSE)/3,5),1)
SC:=LHHV(MA((LOW+HIGH+CLOSE)/3,5),) AND C>REF(C,1) AND C>O;
MR:=SC AND COUNT(SS,2);
BB:=MR AND NOT(REF(MR,1));
股价必涨:=AA OR BB OR 天马;
{ 抄底}
二十日换手率:=BETWEEN(SUM(HSCOL,),,);{ 意思是 日换手率介于---之间}
DFO:=(C-REF(C,1))/REF(C,1)*<-5;
AAO:=BARSLAST(DFO);
突破:=CROSS(C,REF(O,AAO));
抄底:=二十日换手率 AND 突破;
四. 选股指标源码
指标源码内容与前文一致,仅包含主图和副图指标源码,用于量化分析股票。指标包括移动平均线、MACD、股价波动判断、换手率分析等,通过设置条件筛选出具有投资潜力的股票。使用时根据具体市场情况和策略进行调整。注意:指标的有效性需结合市场情况综合判断,不应单一依赖。
量化投资之工具篇:Backtrader从入门到精通(3)Cerebro代码详解
在深入理解backtrader的工具使用中,Cerebro作为核心控制器,其代码详解至关重要。它负责整个系统的协调和管理,虽然看似复杂,但实质上是将任务分发给其他组件如策略、数据源和分析器。让我们通过源代码解析来逐步揭示其工作原理。
首先,Cerebro的初始化主要设置公共属性,并接受一系列参数,这些参数在元类中统一处理,通过**kwargs传递。初始化过程中,实际上并未做太多工作,而是为后续操作准备了基础结构。
数据源的添加是通过cerebro.adddata方法,它可以处理普通数据和resample/replay数据,这个过程涉及对数据源的筛选和处理后加入到Cerebro的datas列表中。
策略的添加同样简单,只是将策略类及参数存储在strats容器中,策略会在run时实例化。
Cerebro的run函数是整个流程的驱动器,它根据传入的参数,按照时间驱动数据运行,同时协调策略、分析器和观察者等组件协同工作。run函数的代码复杂,但关键在于它如何管理和调度各个组件。
最后,Cerebro通过plot方法实现可视化输出,其自身并不直接进行绘图,而是调用plotter模块来完成。
总的来说,虽然Cerebro的代码看起来复杂,但实际上它的作用是连接各个组件,提供一个框架让策略和数据处理得以高效执行。理解Cerebro的工作原理后,后续理解其他部件如data feeds的运作就更为顺畅了。下文我们将转向数据类的解析,进一步探讨数据的管理与驱动机制。
硬核福利量化交易神器talib中个技术指标的Python实现(附全部源码)
本文将带您深入学习纯Python、Pandas、Numpy与Math实现TALIB中的个金融技术指标,不再受限于库调用,从底层理解指标原理,提升量化交易能力。
所需核心库包括:Pandas、Numpy与Math。重要提示:若遇“ewma无法调用”错误,建议安装Pandas 0.版本,或调整调用方式。
我们逐一解析常见指标:
1. 移动平均(Moving Average)
2. 指数移动平均(Exponential Moving Average)
3. 动量(Momentum)
4. 变化率(Rate of Change)
5. 均幅指标(Average True Range)
6. 布林线(Bollinger Bands)
7. 转折、支撑、阻力点(Trend, Support & Resistance)
8. 随机振荡器(%K线)
9. 随机振荡器(%D线)
. 三重指数平滑平均线(Triple Exponential Moving Average)
. 平均定向运动指数(Average Directional Movement Index)
. MACD(Moving Average Convergence Divergence)
. 梅斯线(High-Low Trend Reversal)
. 涡旋指标(Vortex Indicator)
. KST振荡器(KST Oscillator)
. 相对强度指标(Relative Strength Index)
. 真实强度指标(True Strength Index)
. 吸筹/派发指标(Accumulation/Distribution)
. 佳庆指标(ChaiKIN Oscillator)
. 资金流量与比率指标(Money Flow & Ratio)
. 能量潮指标(Chande Momentum Oscillator)
. 强力指数指标(Force Index)
. 简易波动指标(Ease of Movement)
. 顺势指标(Directional Movement Index)
. 估波指标(Estimation Oscillator)
. 肯特纳通道(Keltner Channel)
. 终极指标(Ultimate Oscillator)
. 唐奇安通道指标(Donchian Channel)
参考资料:
深入学习并应用这些指标,将大大提升您的量化交易与金融分析技能。
还来唠一唠曾在全球量化策略热榜上排名第4的TheBigBlue策略(年化.6%)
之前我已经介绍过全球量化策略热榜的入选策略,包括TrendModelSys和RUMI策略,其中TrendModelSys的亮点在于利用MACD金叉/死叉确定“价格关键点”,而RUMI策略的亮点则是其惊人的代码篇幅之短。更多关于全球量化策略热榜的由来和策略详情,请点击下方卡片直达。
很多小伙伴都对榜上的策略非常感兴趣,有些知友和群友都开小窗私信了解更多策略细节,并友好地进行催更,希望将全部策略源码一睹为快。
上榜的策略源码可能已经有人全部复现出来了,但是可能没有全部公开,或者是没有较大范围的公开发布。因此,之前我只找到了TrendModelSys和RUMI这哥俩。后来,在大家的友善催更之后,我费尽心力找到了另一个上榜策略的踪迹,即今天的的主角The Big Blue策略(THE BIG BLUE-2 TRADING SYSTEM),曾在年第2期的FT热榜阶段排名上排第4。
这个大蓝的开发者是米国人Mike Barna,他在量化界是老码农,也是跨界到量化界的火箭工程师,开发过十几套量化交易系统,也上过不同类型的策略榜。Mike在年公布了该策略的思想,点击下方链接可以直达原文Pdf文档《THE BIG BLUE-2 TRADING SYSTEM:A Short Term Multi-Pattern Futures Trading System》。
原文Pdf直达:
Mike开发的很多交易系统都使用了数据挖掘和人工智能来挖掘高胜率的交易信和价格模式,大蓝也不例外。这个日内策略的核心是利用4个价格模式捕捉价格序列中的高胜率交易信号,为了保证胜率,还配有6个过滤条件,过滤条件的作用就是让发现的价格模式更为有效。
4个价格模式:
6个过滤条件:
PS:此处直接引用原文,查看细节详见原文,怕大家被我这英语二把刀坑害了。
Mike发布时的策略回测盈亏曲线,效果看起来还是杠杠的。
国内某位量化大神将其改进后移植到国内商品期货上,构建了一个新的日内策略。在国际上,大蓝的通用时间周期是分钟,但从大神给我展示的回测图中看出,周期越短越有效。可惜的是,我没能要到这份策略源码,但还是要感谢人家让我开了眼,给了我最原始的基础源码让我“肆意发挥”。
分钟周期:
分钟周期:
5分钟周期:
1分钟周期:
-----------------------------苗条的分割线---------------------------------- PS:在此感谢SamFate小伙伴的私信沟通交流,才促成了今天这篇文章,也同时感谢知乎的私信功能,让我能跟大家保持正常的交流/探讨/学习/进步。
我是 @quantkoala,一枚量化/程序化策略源码捕手,全方位收集市面上主流的策略源码(股票+期货),在『量化藏经阁』社群中持续分享,欢迎关注点赞&联系沟通,探讨共赢&成果共享,相互交流&共同进步!!!常在线,多交流,多沟通!!!!!
更多干货请见:
股票里的源码是什么意思
股票中的源码通常指的是用于分析、交易或获取股票市场数据的编程代码。这些代码可能由各种编程语言编写,如Python、C++、Java等,并通常用于构建算法交易系统、量化交易策略、技术指标分析工具等。
详细来说,源码在股票领域的应用主要体现在以下几个方面:
1. 数据获取与处理:源码可以用来从股票交易所、财经数据提供商等处获取实时或历史股票数据。例如,使用Python的pandas库,我们可以方便地获取、清洗和处理股票数据。
2. 策略开发与回测:量化交易者会编写源码来开发交易策略,并通过历史数据进行策略回测。这样可以在实际投入资金前评估策略的有效性和风险。例如,一个简单的移动平均交叉策略可以通过比较短期和长期移动平均线的位置来确定买入和卖出点。
3. 技术指标计算:源码可用于计算各种技术指标,如RSI、MACD、布林带等,这些指标有助于交易者分析股票价格的动量和趋势。
4. 自动化交易:一旦策略经过验证并被认为是有利可图的,源码可以被用来构建自动化交易系统。这些系统可以实时监控市场,并在满足特定条件时自动执行交易。
5. 风险管理与优化:源码还可用于开发风险管理工具,如止损和止盈算法,以及用于优化投资组合配置的算法。
举例来说,一个Python源码片段可能用于从网络API获取股票数据,计算某只股票的简单移动平均线,并根据移动平均线的交叉点生成买入或卖出信号。这样的源码不仅有助于交易者做出更明智的投资决策,还可以通过自动化减少人为错误和情绪干扰。
2025-01-04 11:06
2025-01-04 10:12
2025-01-04 09:42
2025-01-04 09:10
2025-01-04 09:08