欢迎来到皮皮网网站!

【代理多线程源码】【中枢源码】【解源码】apm 源码分析

时间:2024-12-29 20:19:45 来源:超链接去点源码

1.从分析 SkyAPM-dotnet 源码学习现代 APM 探针设计理念(一)
2.Android Systrace 基础知识(8)-基于 Choreographer 的码分渲染机制详解
3.WebRTC PeerConnection源码分析1-main window/附:WebRTC源码级深度解析,进阶大厂高级音视频开发者课程
4.如何对后台应用进行优化:使用应用性能管理工具
5.还在用Zipkin分布式服务链路追踪?码分来试试这个吧!

apm 源码分析

从分析 SkyAPM-dotnet 源码学习现代 APM 探针设计理念(一)

       在后端软件行业的快速变迁中,从SOA到微服务、码分从业务一体化到中台战略、码分从虚拟化到云原生,码分技术更新速度日新月异。码分代理多线程源码这种变革背后的码分核心动力在于硬件发展的瓶颈,促使行业转向追求软件的码分规模化效益。现代后端软件工程师面临的码分挑战之一是如何对服务性能有全面的理解,而APM(Application Performance Monitoring)工具成为了解决这一问题的码分关键。

       APM的码分基本构成包括指标性统计、分布式追踪和日志记录。码分指标性统计,码分如服务的码分吞吐量、成功率、码分流量等,是对单个指标或数据库的分析。分布式追踪则关注一次请求的全过程,从客户端发起到服务完成,甚至涉及业务流程,如商品订购流程,追踪请求的流转轨迹。日志记录则是程序运行过程中产生的信息收集,提供实时的事件记录。

       随着技术的发展,性能监控工具的使用变得越来越普遍。早期,开发人员可能需要自己构建监控系统,但这既耗时又费力。SkyWalking等APM系统应运而生,中枢源码旨在简化性能监控的实现,减少重复工作。

       在SkyWalking中,dotnet探针的设计遵循核心规范。dotnet探针主要基于DiagnosticSource实现,这提供了一种消息的生产者消费者模型,使得事件可以在任意地方被接收。微软官方库中,如HttpContext、HttpClient、SqlClient等,都预留了性能打点,以捕获关键事件。第三方库如gRPC、CAP、SmartSql也提供了同样的功能。

       开发人员可以通过适配SkyWalking,为自己的库添加性能打点,即向DiagnosticSource发送事件信息。这涉及到创建自定义采集器,监听特定事件,并将数据发送到数据中心。

       探针的核心代码在于监听消息,其关键在于DiagnosticListener,它实现了消息的监听与数据的上报。监听的事件由特定的Processor负责处理,这些Processor实现了ITracingDiagnosticProcessor接口,具体负责数据的收集与转换。

       两个有代表性的解源码Processor示例展示了如何实现这一过程。一个针对AspNetCore请求管线,监听并收集请求相关的事件;另一个是针对System.Net下的通用httpclient,同样监听特定事件,以构建完整的请求上下文,并生成标准的tracing信息。

       通过安装SkyWalking并加入探针,后端服务的性能数据将被收集并上传至OAP平台进行分析,最终提供直观的APM信息。这一过程不仅简化了性能监控的实施,还极大地提高了数据分析的效率与准确性。建议读者亲自尝试安装SkyWalking,体验探针在实际服务中的应用。

Android Systrace 基础知识(8)-基于 Choreographer 的渲染机制详解

       Android Systrace 系列文章的第八篇深入探讨了Choreographer在渲染机制中的关键作用。这个工具旨在帮助开发者更好地理解Android Framework的运行流程,尤其是与帧绘制和主线程交互的细节。Choreographer的主要职责是配合Vsync,为应用提供稳定的消息处理时机,确保.6ms(Hz)屏幕刷新时,每一帧的绘制操作都在正确的时间执行,从而实现流畅的用户体验。

       在Android的早期版本中,没有Vsync机制,导致帧率不稳定,而引入Vsync后,结合TripleBuffer和Choreographer,系统通过调整Vsync周期,确保了fps的稳定帧率。Choreographer在这个过程中充当了桥梁角色,它与MessageQueue、libu源码Looper、SurfaceFlinger等紧密协作,确保了App的稳定运行。

       通过Systrace和MethodTrace的分析,我们可以观察到Choreographer的工作流程,例如在滑动桌面场景中,从Vsync到来到开始绘制,Choreographer如何组织和管理这些操作。源码解析部分揭示了Choreographer的初始化过程、FrameHandler的使用,以及如何通过FrameCallback和FrameInfo来记录帧绘制信息。

       对于性能监控,Choreographer提供了FrameCallback接口,允许开发者监测App的性能,如TinyDancer就利用了这个接口计算FPS。此外,Choreographer还与APM工具结合,比如BlockCanary和SurfaceFlinger的PageFlip机制,用于深入性能分析。

       最后,厂商们也利用Choreographer进行优化,如移动事件响应提前、后台动画控制、帧绘制策略调整等,以适应不同屏幕刷新率和性能需求。本文通过实例和源码分析,帮助开发者更直观地理解Choreographer在Android渲染机制中的重要角色。

WebRTC PeerConnection源码分析1-main window/附:WebRTC源码级深度解析,进阶大厂高级音视频开发者课程

       当前音视频行业蓬勃发展,wjsou源码WebRTC作为优秀的音视频开源库,广泛应用于各种音视频业务中。对于高级音视频开发者而言,掌握业务适用性改造能力至关重要。深入学习与分析WebRTC,从中汲取有益经验,对开发者而言具有极高的价值。

       本文基于WebRTC release-源码及云信音视频团队的经验,主要探讨以下问题:ADM(Audio Device Manager)架构解析、启动流程分析、数据流向解析。本文聚焦核心流程,旨在帮助开发者在有需求时快速定位相关模块。

       ADM架构解析

       在WebRTC中,ADM(Audio Device Manager)的行为由AudioDeviceModule定义,实现则由AudioDeviceModuleImpl提供。通过架构图可以看出,AudioDeviceModule全面规定了ADM的所有行为。AudioDeviceModule的主要职责在于管理音频设备的采集与播放。

       AudioDeviceModule由AudioDeviceModuleImpl实现,包含音频设备实例audio_device_和音频缓冲区audio_device_buffer_。audio_device_负责与具体平台的音频设备交互,audio_device_buffer_用于存储音频缓冲区数据,是与AudioDeviceModuleImpl中的audio_device_buffer_同一对象。AudioDeviceModuleImpl通过AttachAudioBuffer()方法将audio_device_buffer_传递给平台实现。

       音频缓冲区AudioDeviceBuffer包含play_buffer_与rec_buffer_,分别用于播放与采集音频数据。AudioTransport接口定义了向下获取播放与传递采集数据的核心方法。

       关于ADM扩展的思考

       在WebRTC实现中,主要关注硬件设备的实现,对于虚拟设备的支持不足。但在实际项目中,往往需要外部音频输入/输出支持。这可以通过在AudioDeviceModuleImpl中引入虚拟设备,实现与真实设备的切换或协同工作,简化了设备管理。

       ADM设备启动时机与流程

       ADM设备启动时机并不严格,通常在创建后即可启动。WebRTC源码中会在SDP协商后检查是否需要启动相关设备,根据需求启动采集或播放设备。启动流程涉及InitXXX与StartXXX方法,最终调用平台实现。

       关于设备停止

       了解启动过程后,设备停止逻辑与启动逻辑大体相似,主要涉及相关方法的调用。

       ADM音频数据流向

       音频数据发送核心流程涉及硬件采集、APM处理、RTP封装、网络发送等步骤。数据接收与播放则包括网络接收、解包、解码、混音与播放,整个流程清晰且高效。

如何对后台应用进行优化:使用应用性能管理工具

       优化后台应用的关键在于有效识别和解决性能瓶颈。在缺乏应用性能管理工具(APM)时,通过调试和源码阅读找出问题变得复杂,尤其在团队协作和大型项目中。APM工具如New Relic,能实时监控和分析应用性能,通过收集运行数据在后台揭示应用运行状况,重点分析五个维度。

       Apdex指标衡量用户对应用性能的满意度,将应用响应时间与理想时间T进行比较,分为满意、体验不佳和无法接受三种表现。New Relic作为常用工具,其基础版免费且功能丰富,适合小型Web应用,而专业版则针对中大型应用提供更多高级功能。以Django应用的博客为例,我们可以通过New Relic进行安装和配置,设置后几分钟,后台即可展示应用的性能数据。

       在New Relic后台,我们可以观察到服务器响应时间、Python运行时间和数据库消耗等信息,以及Apdex值和吞吐量。对于性能优化,大型应用可能需要重点关注数据库,而对于我的博客,优化焦点可能是减少应用逻辑执行时间。New Relic还提供了函数级的详细分析,帮助我们找出耗时的部分,并考虑使用缓存等技术提升性能。同时,New Relic还提供了页面渲染时间的深入分析,有助于发现并优化页面加载速度。

还在用Zipkin分布式服务链路追踪?来试试这个吧!

       微服务架构的兴起,为全球企业带来了转型的机遇与挑战。微服务的双刃剑效应,在带来诸多优势的同时,亦对运维、性能监控及错误排查提出了严峻考验。面对大型项目中服务节点的繁多与请求链路的复杂,分布式系统的APM管理系统应运而生,旨在帮助理解系统行为,分析性能问题,快速定位和解决问题。

       APM系统,全称Application Performance Monitor,是用于监控和管理应用程序性能的工具。谷歌的Dapper论文,作为最早的APM系统原型,为开发者和运维团队提供了强大支持。基于Dapper原理,Pinpoint、SkyWalking等出色APM框架相继问世。SpringCloud官网也集成了一套基于Zipkin的系统:Spring Cloud Sleuth。

       APM系统的基本原理主要围绕Google Dapper设计的几个核心概念:Span(请求的基本工作单元)与Trace(一次完整的调用链路,包含多个Span的树状结构,具有唯一的TraceID)。通过spanId、parentId,请求的每个链路得以串联。每次请求从发起至服务器开始,至返回response结束,每个span共享相同的唯一标识trace_id。

       在选择APM框架时,主要需考虑以下几方面:探针的性能、收集器的可扩展性、全面的调用链路数据分析能力、对开发的透明性以及对应用拓扑的完整展现。Zipkin、Pinpoint与SkyWalking等框架各有优劣,SkyWalking凭借其在探针性能、开发透明性与数据分析能力上的优势,以及部署的便利性,成为了中小型企业的理想选择。

       SkyWalking是一款提供分布式追踪功能的系统,自年起发展成为完整的APM解决方案。它适用于追踪、监控和诊断分布式系统,特别是在使用微服务架构、云原生或容积技术的场景。SkyWalking提供了分布式追踪与上下文传输、应用实例与服务性能指标分析、根源分析、应用拓扑分析、应用和服务依赖分析、慢服务检测、性能优化等主要功能。

       其特色包括多语言探针或类库支持、Java自动探针,无需修改源码即可追踪和监控程序、社区提供的其他多语言探针、.NET Core与Node.js支持、多种后端存储选择、与OpenTracing API协同工作、轻量级、完善功能的后端聚合与分析、现代化Web UI、日志集成以及应用、实例和服务的告警。

       为了使用SkyWalking,需要先确保Linux环境中的Elasticsearch服务已启动,并开放相应端口。安装过程分为三步:下载安装包、安装Skywalking的OAP服务和WebUI、部署微服务探针。在完成安装后,通过访问WebUI(默认端口为)可查看服务实例的性能监控、服务拓扑图、请求链路追踪信息与表格视图。

       本文内容由黑马程序员Java培训学院编写并发布,欢迎转载,但需注明作者及出处,以尊重版权。

更多相关资讯请点击【热点】频道>>>