1.Linux内核源码解析---万字解析从设计模式推演per-cpu实现原理
2.网页源代码的源码基本结构是什么
3.preact源码解析,从preact中理解react原理
4.OpenOCD代码结构浅析(基于RISCV)
5.Linux内核源码解析---cgroup实现之整体架构与初始化
6.Redis源码解析:一条Redis命令是架构解析如何执行的?
Linux内核源码解析---万字解析从设计模式推演per-cpu实现原理
引子
在如今的大型服务器中,NUMA架构扮演着关键角色。源码它允许系统拥有多个物理CPU,架构解析不同NUMA节点之间通过QPI通信。源码虽然硬件连接细节在此不作深入讨论,架构解析安徽与河南源码但需明白每个CPU优先访问本节点内存,源码当本地内存不足时,架构解析可向其他节点申请。源码从传统的架构解析SMP架构转向NUMA架构,主要是源码为了解决随着CPU数量增多而带来的总线压力问题。
分配物理内存时,架构解析numa_node_id() 方法用于查询当前CPU所在的源码NUMA节点。频繁的架构解析内存申请操作促使Linux内核采用per-cpu实现,将CPU访问的源码变量复制到每个CPU中,以减少缓存行竞争和False Sharing,类似于Java中的Thread Local。
分配物理页
尽管我们不必关注底层实现,buddy system负责分配物理页,关键在于使用了numa_node_id方法。接下来,我们将深入探索整个Linux内核的per-cpu体系。
numa_node_id源码分析获取数据
在topology.h中,我们发现使用了raw_cpu_read函数,传入了numa_node参数。接下来,我们来了解numa_node的定义。
在topology.h中定义了numa_node。我们继续跟踪DECLARE_PER_CPU_SECTION的定义,最终揭示numa_node是一个共享全局变量,类型为int,存储在.data..percpu段中。
在percpu-defs.h中,numa_node被放置在ELF文件的.data..percpu段中,这些段在运行阶段即为段。接下来,我们返回raw_cpu_read方法。
在percpu-defs.h中,我们继续跟进__pcpu_size_call_return方法,此方法根据per-cpu变量的大小生成回调函数。对于numa_node的int类型,最终拼接得到的是raw_cpu_read_4方法。
在percpu.h中,调用了一般的read方法。在percpu.h中,获取numa_node的绝对地址,并通过raw_cpu_ptr方法。
在percpu-defs.h中,我们略过验证指针的环节,追踪arch_raw_cpu_ptr方法。接下来,我们来看x架构的实现。
在percpu.h中,vncnet源码使用汇编获取this_cpu_off的地址,代表此CPU内存副本到".data..percpu"的偏移量。加上numa_node相对于原始内存副本的偏移量,最终通过解引用获得真正内存地址内的值。
对于其他架构,实现方式相似,通过获取自己CPU的偏移量,最终通过相对偏移得到pcp变量的地址。
放入数据
讨论Linux内核启动过程时,我们不得不关注per-cpu的值是如何被放入的。
在main.c中,我们以x实现为例进行分析。通过setup_percpu.c文件中的代码,我们将node值赋给每个CPU的numa_node地址处。具体计算方法通过early_cpu_to_node实现,此处不作展开。
在percpu-defs.h中,我们来看看如何获取每个CPU的numa_node地址,最终还是通过简单的偏移获取。需要注意如何获取每个CPU的副本偏移地址。
在percpu.h中,我们发现一个关键数组__per_cpu_offset,其中保存了每个CPU副本的偏移值,通过CPU的索引来查找。
接下来,我们来设计PER CPU模块。
设计一个全面的PER CPU架构,它支持UMA或NUMA架构。我们设计了一个包含NUMA节点的结构体,内部管理所有CPU。为每个CPU创建副本,其中存储所有per-cpu变量。静态数据在编译时放入原始数据段,动态数据在运行时生成。
最后,我们回到setup_per_cpu_areas方法的分析。在setup_percpu.c中,我们详细探讨了关键方法pcpu_embed_first_chunk。此方法管理group、unit、静态、保留、动态区域。
通过percpu.c中的关键变量__per_cpu_load和vmlinux.lds.S的链接脚本,我们了解了per-cpu加载时的地址符号。PERCPU_INPUT宏定义了静态原始数据的起始和结束符号。
接下来,我们关注如何分配per-cpu元数据信息pcpu_alloc_info。percpu.c中的方法执行后,元数据分配如下图所示。
接着,我们分析pcpu_alloc_alloc_info的thymeleaf源码方法,完成元数据分配。
在pcpu_setup_first_chunk方法中,我们看到分配的smap和dmap在后期将通过slab再次分配。
在main.c的mm_init中,我们关注重点区域,完成map数组的slab分配。
至此,我们探讨了Linux内核中per-cpu实现的原理,从设计到源码分析,全面展现了这一关键机制在现代服务器架构中的作用。
网页源代码的基本结构是什么
如图:1.无论是动态还是静态页面都是以“<html>”开始,然后在网页最后以“</html>”结尾。
2.<head>”页头
其在<head></head>中的内容是在浏览器中内容无法显示的,这里是给服务器、浏览器、链接外部JS、a链接CSS样式等区域,而里面“<title></title>”中放置的是网页标题。
3.“<meta name="keywords" content="关键字" /> <meta name="description" content="本页描述或关键字描述" /> ”
这两个标签里的内容是给搜索引擎看的说明本页关键字及本张网页的主要内容等SEO可以用到。
4."<body></body> "
也就是常说的body区 ,这里放置的内容就可以通过浏览器呈现给用户,其内容可以是table表格布局格式内容,也可以DIV布局的内容,也可以直接是文字。这里也是最主要区域,网页的内容呈现区。
5.最后是以"</html> "结尾,也就是网页闭合。
以上是一个完整的最简单的html语言基本结构,通过以上可以再增加更多的样式和内容充实网页。
扩展资料:
标签详解:
1.<!doctype>:是声明用哪个 HTML 版本进行编写的指令。并不是 HTML 标签。<!doctype html>:html5网页声明,表示网页采用html5。
2.<meta>:提供有关页面的元信息(针对搜索引擎和更新频度的描述和关键词等),写在<head>标签内。
a)<meta charset="UTF-8">:设置页面的编码格式UTF-8;
b)<meta name="Generator" content="EditPlus">:说明生成工具为EditPlus;
c)<meta name="Author" content="">:告诉搜索引擎站点制作的作者;
d)<meta name="Keywords" content="">:告诉搜索引擎网站的关键字;
e)<meta name="Description" content="">:告诉搜索引擎网站的内容;
参考资料:
preact源码解析,从preact中理解react原理
基于preact.3.4版本进行分析,完整注释请参阅链接。阅读源码建议采用跳跃式阅读,遇到难以理解的部分先跳过,待熟悉整体架构后再深入阅读。如果觉得有价值,不妨为项目点个star。 一直对研究react源码抱有兴趣,但每次都半途而废,主要原因是react项目体积庞大,代码颗粒化且执行流程复杂,需要投入大量精力。因此,转向研究preact,一个号称浓缩版react,librepilot源码体积仅有3KB。市面上已有对preact源码的解析,但大多存在版本过旧和分析重点不突出的问题,如为什么存在_nextDom?value为何不在diffProps中处理?这些都是解析代码中的关键点和收益点。一. 文件结构
二. 渲染原理 简单demo展示如何将App组件渲染至真实DOM中。 vnode表示节点描述对象。在打包阶段,babel的transform-react-jsx插件会将jsx语法编译为JS语法,即转换为React.createElement(type, props, children)形式。preact中需配置此插件,使React.createElement对应为h函数,编译后的jsx语法如下:h(App,null)。 执行render函数后,先调用h函数,然后通过createVNode返回虚拟节点。最终,h(App,null)的执行结果为{ type:App,props:null,key:null,ref:null},该虚拟节点将被用于渲染真实DOM。 首次渲染时,旧虚拟节点基本为空。diff函数比较虚拟节点与真实DOM,创建挂载完成,执行commitRoot函数,该函数执行组件的did生命周期和setState回调。2. diff
diff过程包含diff、diffElementNodes、diffChildren、diffProps四个函数。diff主要处理函数型虚拟节点,非函数型节点调用diffElementNodes处理。判断虚拟节点是否存在_component属性,若无则实例化,执行组件生命周期,调用render方法,保存子节点至_children属性,进而调用diffChildren。 diffElementNodes处理HTML型虚拟节点,创建真实DOM节点,查找复用,若无则创建文本或元素节点。diffProps处理节点属性,如样式、事件监听等。diffChildren比较子节点并添加至当前DOM节点。 分析diff执行流程,render函数后调用diff比较虚拟节点,执行App组件生命周期和render方法,保存返回的虚拟节点至_children属性,调用diffChildren比较子节点。整体虚拟节点树如下: diffChildren遍历子节点,查找DOM节点,比较虚拟节点,vxwork源码返回真实DOM,追加至parentDOM或子节点后。三. 组件
1. component
Component构造函数设置状态、强制渲染、定义render函数和enqueueRender函数。 强制渲染通过设置_force标记,加入渲染队列并执行。_force为真时,diff渲染不会触发某些生命周期。 render函数默认为Fragment组件,返回子节点。 enqueueRender将待渲染组件加入队列,延迟执行process函数。process排序组件,渲染最外层组件,调用renderComponent渲染,更新DOM后执行所有组件的did生命周期和setState回调。2. context
使用案例展示跨组件传递数据。createContext创建context,包含Provider和Consumer组件。Provider组件跨组件传递数据,Consumer组件接收数据。 源码简单,createContext后返回context对象,包含Consumer与Provider组件。Consumer组件设置contextType属性,渲染时执行子节点,等同于类组件。 Provider组件创建函数,渲染到Provider组件时调用getChildContext获取ctx对象,diff时传递至子孙节点组件。组件设置contextType,通过sub函数订阅Provider组件值更新,值更新时渲染订阅组件。四. 解惑疑点
理解代码意图。支持Promise时,使用Promise处理,否则使用setTimeout。了解Promise.prototype.then.bind(Promise.resolve())最终执行的Promise.resolve().then。 虚拟节点用Fragment包装的原因是,避免直接调用diffElementNodes,以确保子节点正确关联至父节点DOM。 hydrate与render的区别在于,hydrate仅处理事件,不处理其他props,适用于服务器端渲染的HTML,客户端渲染使用hydrate提高首次渲染速度。 props中value与checked单独处理,diffProps不处理,处理在diffChildren中,找到原因。 在props中设置value为空的原因是,遵循W3C规定,不设置value时,文本内容作为value。为避免MVVM问题,需在子节点渲染后设置value为空,再处理元素value。 组件异常处理机制中,_processingException和_pendingError变量用于标记组件异常处理状态,确保不会重复跳过异常组件。 diffProps中事件处理机制,为避免重复添加事件监听器,只在事件函数变化时修改dom._listeners,触发事件时仅执行保存的监听函数,移除监听在onChange设置为空时执行。 理解_nextDom的使用,确保子节点与父节点关联,避免在函数型节点渲染时进行不必要的关联操作。OpenOCD代码结构浅析(基于RISCV)
揭示OpenOCD的RISCV调试之旅:深度解析与实践在探索RISC-V平台的JTAG模块调试世界中,OpenOCD代码的精髓成为了一道迷人的学习课题。OpenOCD的架构犹如精密的调音器,由两大部分巧妙地编织:配置文件的解析与GDB通信的桥梁。
配置文件解析艺术OpenOCD的起始点是配置文件,这里隐藏着TCL语法的魔法。command_registrants[]数组如同指挥家的指挥棒,引导预注册的handler函数,如trace handler,以独特的名字定位,灵活适应不同的工作模式。每个handler函数注册后,它们形成一个有序的执行矩阵,便于Jim解释器高效地搜索并执行命令。
GDB通信的秘密通道服务器的核心是server_loop(),它如同信使,接收socket中的每一道指令,无论是设置断点还是执行其他操作。设置软件断点的奥秘,是通过riscv_remove_breakpoint函数,将OpenOCD的机器码巧妙地“写回”到目标MCU的内存地址。底层操作涉及dmi_write()和dmi_read(),犹如在调试的迷宫中穿行,通过Debug Module获取和修改内存。
OpenOCD通过DTM寄存器深入RISC-V的CSR世界,利用DMI命令格式进行抽象操作,实现对mstatus等寄存器的间接访问。异常处理流程中,每一步都像一场精密的舞蹈,信号通过JTAG的TCK、TMS、TDI和TDO四根引脚交织传递。 调试实战指南要驾驭OpenOCD,首先得铺好基础:安装依赖、下载源码、配置ddd调试器,编译并启动gdbserver和ddd,熟练运用gdb的断点、单步命令。DDD的可视化工具如变量查看、调用栈和寄存器窗口,让调试过程更加直观。
理解OpenOCD与处理器的亲密合作至关重要:GDB加载elf文件,通过符号信息驱动,OpenOCD则搭建起GDB与Debug-Module之间的沟通桥梁,实现精准的调试操作。 探索之旅的下一步对OpenOCD源码的深入研究,是了解其精髓的关键,这是一场永无止境的学习之旅。未来,我将继续学习,更新文档,以更全面的视角解析OpenOCD的复杂运作。
Linux内核源码解析---cgroup实现之整体架构与初始化
cgroup在年由Google工程师开发,于年被融入Linux 2.6.内核。它旨在管理不同进程组,监控一组进程的行为和资源分配,是Docker和Kubernetes的基石,同时也被高版本内核中的LXC技术所使用。本文基于最早融入内核中的代码进行深入分析。
理解cgroup的核心,首先需要掌握其内部的常用术语,如子系统、层级、cgroupfs_root、cgroup、css_set、cgroup_subsys_state、cg_cgroup_link等。子系统负责控制不同进程的行为,例如CPU子系统可以控制一组进程在CPU上执行的时间占比。层级在内核中表示为cgroupfs_root,一个层级控制一批进程,层级内部绑定一个或多个子系统,每个进程只能在一个层级中存在,但一个进程可以被多个层级管理。cgroup以树形结构组织,每一棵树对应一个层级,层级内部可以关联一个或多个子系统。
每个层级内部包含的节点代表一个cgroup,进程结构体内部包含一个css_set,用于找到控制该进程的所有cgroup,多个进程可以共用一个css_set。cgroup_subsys_state用于保存一系列子系统,数组中的每一个元素都是cgroup_subsys_state。cg_cgroup_link收集不同层级的cgroup和css_set,通过该结构可以找到与之关联的进程。
了解了这些概念后,可以进一步探索cgroup内部用于结构转换的函数,如task_subsys_state、find_existing_css_set等,这些函数帮助理解cgroup的内部运作。此外,cgroup_init_early和cgroup_init函数是初始化cgroup的关键步骤,它们负责初始化rootnode和子系统的数组,为cgroup的使用做准备。
最后,需要明确Linux内一切皆文件,cgroup基于VFS实现。内核启动时进行初始化,以确保系统能够正确管理进程资源。cgroup的初始化过程分为早期初始化和常规初始化,其中早期初始化用于准备cpuset和CPU子系统,确保它们在系统运行时能够正常工作。通过这些步骤,我们可以深入理解cgroup如何在Linux内核中实现资源管理和进程控制。
Redis源码解析:一条Redis命令是如何执行的?
作者:robinhzhang Redis,一个开源内存数据库,凭借其高效能和广泛应用,如缓存、消息队列和会话存储,本文将带你探索其命令执行的底层流程。本文将以源码解析的形式,逐层深入Redis的核心结构和命令执行过程,旨在帮助开发者理解实现细节,提升编程技术和设计意识。源码结构概览
在学习Redis源代码之前,首先要了解其主要的组成部分:redisServer、redisClient、redisDb、redisObject以及aeEventLoop。这些结构体和事件模型构成了Redis的核心架构。redisServer:服务端运行的核心结构,包括监听socket、数据存储的redisDb列表和客户端连接信息。
redisClient:客户端连接状态的存储,包括命令处理缓冲区、回复数据列表和数据库句柄。
redisDb:键值对的数据存储,采用两个哈希表实现渐进式rehash。
redisObject:存储对象的通用表示,包含引用计数和LRU时间,用于内存管理。
aeEventLoop:事件循环,管理文件和时间事件的处理。
核心流程详解
Redis的执行流程从main函数开始,首先初始化配置和服务器组件,进入主循环处理事件。命令执行流程涉及redis启动、客户端连接、接收命令和返回结果四个步骤:启动阶段:创建socket服务器,注册可读事件,进入主循环。
连接阶段:客户端连接后,接收并处理命令,创建客户端实例。
命令阶段:客户端发送命令,服务端解析并调用对应的命令处理函数。
结果阶段:处理命令后,根据协议格式构建回复并写回客户端。
渐进式rehash与内存管理
Redis的内存管理采用引用计数法,通过对象的refcount字段控制内存分配和释放。rehash操作在Redis 2.x版本引入,通过逐步迁移键值对,降低对单线程性能的影响。当负载达到阈值,会进行扩容,这涉及新表的创建和键值对的迁移。总结
本文通过Redis源码分析,揭示了其命令执行的细节,包括启动流程、客户端连接、命令处理和结果返回,以及内存管理策略。这将有助于开发者深入理解Redis的工作原理,提升编程效率和设计决策能力。UE4 LevelSequence源码剖析(一)
UE4的LevelSequence源码解析系列将分四部分探讨,本篇聚焦Runtime部分。Runtime代码主要位于UnrealEngine\Engine\Source\Runtime\MovieScene目录,结构上主要包括Channels、Evaluation、Sections和Tracks等核心模块。
ALevelSequenceActor是Runtime的核心,负责逐帧更新,它包含UMovieSceneSequence和ULevelSequencePlayer。ALevelSequenceActor独立于GameThread更新,并且在Actor和ActorComponent更新之前,确保其在RuntTickGroup之前执行。
IMovieScenePlaybackClient的关键接口用于绑定,编辑器通过IMovieSceneBindingOwnerInterface提供直观的蓝图绑定机制。UMovieSceneSequence是LevelSequence资源实例,它支持SpawnableObject和PossessableObject,便于控制对象的拥有和分离。
ULevelSequencePlayer作为播放控制器,由ALevelSequenceActor的Tick更新,具有指定对象在World和Sublevel中的功能,还包含用于时间控制的FMovieSceneTimeController。UMovieSceneTrack作为底层架构,由UMovieSceneSections组成,每个Section封装了Section的帧范围和对应Channel的数据。
序列的Eval过程涉及EvalTemplate和ExecutionTokens,它们协同工作模拟Track。FMovieSceneEvaluationTemplate定义了Track的模拟行为,而ExecutionTokens则是模拟过程中的最小单元。真正的模拟操作在FMovieSceneExecutionTokens的Apply函数中执行,通过BlendingAccumulator进行结果融合。
自定义UMovieSceneTrack需要定义自己的EvaluationTemplate,这部分将在编辑器拓展部分详细讲解。序列的Runtime部分展示了如何在GameThread中高效管理和模拟场景变化,为后续的解析奠定了基础。
OVS 总体架构、源码结构及数据流程全面解析
OVS 是一款基于SDN理念的虚拟交换机,它在数据中心的虚拟网络中发挥着关键作用。其核心架构由控制面和数据面组成,控制面通过OpenFlow协议管理交换策略,数据面则负责实际的数据包交换。OVS的整体架构可以细分为管理面、数据面和控制面,每个部分都有特定的功能和工具以提升用户体验。
管理面主要包括OVS提供的各种工具,如ovs-ofctl用于OpenFlow交换机的监控和管理,ovs-dpctl用于配置和管理内核模块的datapath,ovs-vsctl负责ovs-vswitchd的配置和ovsdb-server的数据库操作,ovs-appctl则集合了这些工具的功能。这些工具让用户能方便地控制底层模块。
源码结构方面,OVS的数据交换逻辑由vswitchd和可选的datapath实现,ovsdb存储配置信息,控制面使用OVN,提供兼容性和性能。OVS的分层结构包括vswitchd与ovsdb通信,ofproto处理OpenFlow通信,dpif进行流表操作,以及netdev抽象网络设备并支持不同平台和隧道类型。
数据转发流程中,ovs首先解析数据包信息,然后根据流表决定是否直接转发。若未命中,会将问题上交给用户态的ovs-vswitchd,进一步处理或通过OpenFlow通知控制器。ovs-vswitchd在必要时更新流表后,再将数据包返回给内核态的datapath进行转发。
总的来说,OVS通过其强大的管理工具和精细的架构设计,简化了用户对虚拟网络的操控,确保了高效的数据传输和策略执行。