1.鸿蒙轻内核M核源码分析:中断Hwi
2.我现在在刷STM32的源码源码ARM例程,不知道IAR和ARM是内核什么区别
3.ARM处理器超频、内存超频方法——以主线内核设备树、剖析主线u-boot为例
4.手把手教你搭建ARM64 QEMU环境
5.彻底理解Linux ARM64系统调用
6.图文鲲鹏916-ARM64架构源码gcc编译完整记录
鸿蒙轻内核M核源码分析:中断Hwi
在鸿蒙轻内核源码分析系列中,源码源码本文将深入探讨中断模块,内核旨在帮助读者理解中断相关概念、剖析触电直播源码鸿蒙轻内核中断模块的源码源码源代码实现。本文所涉及源码基于OpenHarmony LiteOS-M内核,内核读者可通过开源站点 gitee.com/openharmony/k... 获取。剖析中断概念介绍
中断机制允许CPU在特定事件发生时暂停当前执行的源码源码任务,转而处理该事件。内核这些事件通常由外部设备触发,剖析通过中断信号通知CPU。源码源码中断涉及硬件设备、内核中断控制器和CPU三部分:设备产生中断信号;中断控制器接收信号并发出中断请求给CPU;CPU响应中断,剖析执行中断处理程序。中断相关的硬件介绍
硬件层面,中断源分为设备、中断控制器和CPU。设备产生中断信号;中断控制器接收并转发这些信号至CPU;CPU在接收到中断请求后,暂停当前任务,转而执行中断处理程序。中断相关的概念
每个中断信号都附带中断号,用于识别中断源。中断优先级根据事件的重要性和紧迫性进行划分。当设备触发中断后,CPU中断当前任务,执行中断处理程序。中断处理程序由设备特定,且通常以中断向量表中的地址作为入口点。中断向量表按中断号排序,存储中断处理程序的java 源码 阅读顺序地址。鸿蒙轻内核中断源代码
中断相关的声明和定义
在文件 kernel\arch\arm\cortex-m7\gcc\los_interrupt.c 中定义了结构体、全局变量和内联函数。关键变量 g_intCount 记录当前正在处理的中断数量,内联函数 HalIsIntActive() 用于检查是否正在处理中断。中断向量表在中断初始化过程中设置,用于映射中断号到相应的中断处理程序。中断初始化 HalHwiInit()
系统启动时,在 kernel\src\los_init.c 中初始化中断。HalHwiInit() 函数在 kernel\arch\arm\cortex-m7\gcc\los_interrupt.c 中实现,负责设置中断向量表和优先级组,配置中断源,如系统中断和定时器中断。创建中断 HalHwiCreate()
开发者可通过 HalHwiCreate() 函数注册中断处理程序,传入中断号、优先级和中断模式。函数内部验证参数,设置中断处理程序,最终通过调用 CMSIS 函数完成中断创建。删除中断 HalHwiDelete()
中断删除操作通过 HalHwiDelete() 实现,接收中断号作为参数,调用 CMSIS 函数失能中断,设置默认中断处理程序,完成中断删除。中断处理执行入口程序
默认的中断处理程序 HalHwiDefaultHandler() 仅用于打印中断号后进行死循环。HalInterrupt() 是中断处理执行入口程序的核心,它包含中断数量计数、中断号获取、中断前后的操作以及调用中断处理程序的逻辑。开关中断
开关中断用于控制CPU是否响应外部中断。通过宏 LOS_IntLock() 关闭中断, LOS_IntRestore() 恢复中断状态,eclipse配置java源码 LOS_IntUnLock() 使能中断。这组宏对应汇编函数,使用寄存器 PRIMASK 控制中断状态。小结
本文详细解析了鸿蒙轻内核中断模块的源代码,涵盖了中断概念、初始化、创建、删除以及开关操作。后续文章将带来更多深入技术分享。欢迎在 gitee.com/openharmony/k... 分享学习心得、提出问题或建议。关注、点赞、Star 和 Fork 到个人账户,便于获取更多资源。我现在在刷STM的ARM例程,不知道IAR和ARM是什么区别
ARM,STM,IAR三者的关系:
IAR是开发工具软件,你开发STM需要用到这个软件进行源代码编写,和调试,而ARM是内核ST(意法半导体)公司购买了ARM内核的使用设计全,STM内部就有一个ARM的内核,这个内核你可以想象为电脑的CPU,而这台“电脑”的硬盘,显卡,声卡之类的就是ARM内核以外的外设,共同组成了STM这台电脑。
ARM处理器超频、内存超频方法——以主线内核设备树、主线u-boot为例
ARM处理器超频和内存超频可以通过主线内核设备树和u-boot来实现。彩虹云监控源码首先,内存频率设置可通过查看/sys/kernel/debug/clk/clk_summary得到,初始频率为 MB/s。为了提升到厂商推荐的 MB/s,需在u-boot源码的menuconfig中修改sunxi dram clock speed,编译并刷写后,内存频率即提升至 MB/s,操作后系统反应速度会有所提升。
对于CPU频率,ARM平台的Linux内核主要通过设备树文件配置。以香橙派pc为例,通过修改sun8i-h3-orangepi-pc.dts文件,根据SYA提供的电压管理,可增加新的频率档位。注意在超频前确保良好的散热措施,如安装散热片或风扇,以防止过热。我的CPU在调整后最高频率可达1.5GHz。
GPU频率设置同样在设备树中进行,Mali GPU的频率通常受负载自动调节,可以通过powertop或搜索GPU名称查看。全志H3的GPU理论上可达MHz,但在良好散热下可以超频至MHz,但仍需注意避免过度导致性能问题。
为了进一步提升系统速度,可以考虑将USB固态硬盘作为系统盘,通过修改boot argument和fstab文件来优化系统分区。这样可以有效提升系统的运行速度。
手把手教你搭建ARM QEMU环境
在上篇介绍了ARM QEMU环境搭建过程后,让我们继续学习如何搭建ARM QEMU开发环境。 首先,开源中国 git 源码准备开发环境:你的PC系统:Windows
虚拟机软件:VMware
虚拟机操作系统:Ubuntu .
目标模拟的位CPU:Cortex-A
使用版本:qemu-8.2.0、Linux Kernel 5..和busybox-1..1
构建步骤如下:从qemu官网下载并解压qemu-8.2.0源码。
确保你的主机Python版本大于3.8,如需升级,访问python官网下载源码。
安装所需的Python依赖和glib2.0环境。
进入qemu目录,配置源码,创建编译目录并进行配置。
从kernel.org获取Linux kernel 5.源码,解压并编译生成Image文件。
同时,编译kernel modules,存放在指定目录。
使用busybox制作根文件系统:下载最新版本源码,设置交叉编译工具链,重新配置并安装。
创建rootfs目录,将busybox安装内容复制到其中,包括设置环境变量和设备节点。
在/etc/init.d/rcS脚本中,rcS会挂载文件系统、处理热插拔和设置eth0的静态IP。
理解并配置其他配置文件如/etc/fstab和/etc/profile。
如果需要,可以尝试基于ram的内存文件系统,使用cpio工具制作initramfs或gzip压缩。
如果需要持久化,制作基于硬盘的文件系统。
最后,使用qemu命令启动内核并通过串口登录。
对于更详细的步骤和示例,可以参考我的文章《Linux随笔录》,回复关键字"busybox"获取相关资源。作者潘小帅,热衷于Linux底层技术,喜欢分享原创文章,也欢迎关注微信公众号Linux随笔录,一同探讨技术与生活。感谢您的支持和关注!彻底理解Linux ARM系统调用
本文将逐步解析Linux ARM系统调用的工作原理,从用户程序如何通过系统调用进入内核并执行功能。首先,我们理解系统调用的本质:应用程序通过软中断的方式从用户态切换到内核态,然后由内核处理特定任务,再返回用户态。在ARMv8架构的ARM处理器中,这一过程涉及运行级别的划分,如EL0、EL1、EL2和EL3,系统调用通常发生在从EL0到EL1的跳转。 在x架构中,使用int $0x汇编指令触发系统调用,而在ARMv8中,对应的指令是svc。glibc库的系统调用实现是关键,例如在glibc-2.源码中,以bind函数为例,可以看到通过INTERNAL_SYSCALL_RAW宏和svc指令实现的内核调用。接下来,我们将亲手模拟write函数的系统调用过程。 下面是一个简单的write函数实现示例,编译并运行它,你可以在我的GitHub项目javonhe/multi_experiments中获取源代码:GitHub - javonhe/multi_experiments: experiments for study。如果你觉得这个内容有价值,不妨分享或者收藏,你的支持将是我继续分享知识的动力。图文鲲鹏-ARM架构源码gcc编译完整记录
以下是关于ARM架构源码gcc编译的详细步骤记录: 首先,确保已经准备就绪,如果cmake未安装,需要进行安装。检查cmake版本以确认其是否满足需求。 安装必要的依赖包,如isl、gmp、mpc、mpfr等,检查它们是否已成功安装。 针对gcc版本过低的问题,需下载并更新到7.3版本。下载并解压gcc7.3的安装包。 在gcc-7.3.0目录下,确认已下载和安装了所有依赖包。 利用多核CPU的优势,通过“-j”参数加速编译过程。原先是按照官方文档使用make -j,但速度缓慢,后来调整为make -j以提升效率。 依次执行编译目录创建、gcc编译、安装以及确认“libstdc++.so”软连接在正确的目录(/usr/lib)。 编译完成后,通过查看gcc版本来确认安装是否成功。 以上就是完整的gcc编译安装流程。如果您觉得这些信息对您有所帮助,欢迎分享和关注我们的更新。更多技术内容敬请期待,感谢您的支持!GitLab ARM源码在信创统信UOS下的搭建
GitLab是一个基于Ruby on Rails语言开发的开源应用,提供私有化的Git项目仓库,可通过Web界面进行访问和管理。GitLab官方提供了多种安装方式,包括通过操作系统软件源安装、Docker容器部署以及源代码自编译安装。然而,GitLab官方构建的软件包和镜像主要针对X架构,并未提供针对ARMv8的版本。UOS操作系统支持多种CPU架构(AMD、ARM、MIPS、SW)和六种国产CPU平台(鲲鹏、龙芯、申威、海光、兆芯、飞腾)以及Intel/AMD的主流CPU,UOSV基于Debian stable,内核为4.,支持多种架构。由于GitLab官方Omnibus安装包并未支持arm架构,因此需要通过源码编译来安装GitLab-ce .1-stable在UOSV arm架构上。
在部署GitLab-ce .1-stable之前,首先需要搭建编译环境,包括Ruby 2.7.4、redis 6.2.4、git 2..0、Go:.、Postgres: 、Node: .x、Nginx:1..1。编译过程较为平顺,但安装Ruby、Node和Go时需要注意选择国内镜像源以确保顺利编译。GitLab-ce:-1-stable版本要求Git2..x或以上版本,推荐使用Gitaly提供的git版本。UOSV 版本若选择调试工具包,则系统自带的git版本不符合要求,需要手动安装Gitaly所提供的git版本,确保版本满足GitLab要求。安装完成后,系统会显示版本为2..0,满足要求。此外,还需安装GraphicsMagick支持GitLab引入的自定义图标功能,以及安装Postfix邮件服务器和exiftool以支持GitLab Workhorse功能。Ruby的安装也非常重要,更换国内Ruby Gem源能够提高编译过程的稳定性。
在完成编译环境搭建后,需为GitLab创建一个名为git的用户。GitLab .1及以后版本仅支持PostgreSQL数据库,GitLab-ce .1-stable需要PostgreSQL 或以上版本,并且需要pg_trgm扩展和btree_gist扩展。GitLab .0及以后版本要求Redis版本4.0或以上,推荐使用6.0或以上版本。部署GitLab-ce .1-stable需要编译三个部分:gitLab核心代码、gitlab-shell和GitLab-Workhorse。编译完成后,主要目录结构会根据部署环境进行相应调整。
配置GitLab的各个组件时,需要将源码配置调整为已搭建环境的配置。主要修改数据库配置为已安装的PostgreSQL 版本。安装过程中可能会遇到一些小问题,如使用sudo执行某些命令时的超时错误。解决这类问题通常需要检查和调整环境变量,确保git账号的环境变量能够正常工作。例如,通过修改/etc/sudoers文件,确保在执行sudo命令时保留所需的环境变量,如GOPROXY。安装完成后,GitLab及其环境应已正确配置,系统架构识别为arm,GitLab版本为.1,redis版本未读取但不影响使用。至此,GitLab在UOSV arm架构上成功部署完毕。